File size: 10,296 Bytes
40fc2b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import time
import json
import random
import base64
from io import BytesIO
from fire import Fire

import streamlit as st
from ase.atoms import Atoms
from ase.build import bulk
from ase.io import write
from chemeleon import Chemeleon
from chemeleon.visualize import Visualizer

from utils import dict_to_atoms

# Constants
TIMESTEPS = 1000
TRAJECTORY_STEPS = 100
DEFAULT_NUM_SAMPLES = 3
DEMO = False

# Set page configuration
st.set_page_config(page_title="Chemeleon", layout="wide")

# Hide Streamlit's default menu and footer for a cleaner look
hide_streamlit_style = """
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            </style>
            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True)


def demo_generator_structures(num_atoms, text_input, num_samples):
    """
    Generate crystal structures for demonstration purposes.
    """
    elements = random.choices(["Si", "Ge", "C", "Na", "Cl"], k=num_samples)
    random_elements = random.choices(elements, k=num_atoms)

    for step in range(TIMESTEPS):
        time.sleep(0.001)
        random_atoms = Atoms(
            "Li",
            positions=[[random.random() * 5 for _ in range(3)]],
        )
        atoms_list = [bulk(element, "fcc", a=5.43) for element in random_elements]
        new_atoms_list = []

        for atoms in atoms_list:
            # Adding random atoms to each bulk structure
            combined_atoms = atoms + random_atoms
            new_atoms_list.append(combined_atoms)

        yield new_atoms_list


def generator_structures_chemeleon(
    num_atoms, test_input, num_samples, use_client=False
):
    """
    Generate crystal structures based on the given number of atoms and input text.
    """
    if use_client:
        response = client(
            url="https://8000-01j80snre5xdhq828s1q5brs0m.cloudspaces.litng.ai/predict",
            n_samples=num_samples,
            n_atoms=num_atoms,
            text_input=test_input,
        )

        for line in response.iter_lines():
            output = json.loads(line)["output"]
            atom_dict = json.loads(output)
            atoms_list = [dict_to_atoms(atoms_dict) for atoms_dict in atom_dict]
            yield atoms_list
    else:
        chemeleon = Chemeleon.load_general_text_model()
        for atoms_list in chemeleon.sample(
            text_input=test_input,
            n_atoms=num_atoms,
            n_samples=num_samples,
            stream=True,
        ):
            yield atoms_list


def visualize_structure(atoms):
    """
    Visualize the given atomic structure using Plotly.
    """
    visualizer = Visualizer([atoms], atomic_size=0.6, resolution=20)
    fig = visualizer.view()
    return fig


def visualize_trajectory(atoms_list):
    """
    Visualize the given atomic structure trajectory using Plotly.
    """
    visualizer = Visualizer(atoms_list, atomic_size=0.6, resolution=20)
    fig = visualizer.view_trajectory(duration=1000)
    return fig


# Main application function
def main(use_client=False):
    # Initialize session state
    if "structures" not in st.session_state:
        st.session_state.structures = []
    if "trajectory" not in st.session_state:
        st.session_state.trajectory = []
    if "progress_in_generating" not in st.session_state:
        st.session_state["progress_in_generating"] = False

    # Sidebar for user inputs
    with st.sidebar:
        st.image("assets/logo_static.jpg", width=200)
        st.markdown(
            """
            <h1 style='text-align: center; color: #4CAF50;'>Chemeleon</h1>
            <h3 style='text-align: center;'>A text-guided diffusion model for crystal structure generation</h3>
            """,
            unsafe_allow_html=True,
        )
        st.markdown("---")
        description = st.text_input(
            "Input your text prompt to generate crystal structures",
            "A Crystal Structure of LiMnO4 with orthorhombic symmetry",
            help="Examples: 'LiMnO4' or 'A Crystal Structure of BaTiO3 with cubic symmetry'",
        )
        num_atoms = st.slider(
            "🔢 Number of Atoms:",
            min_value=1,
            max_value=20,
            value=6,
            help="Select the number of atoms in the unit cell.",
        )
        num_samples = st.number_input(
            "🧪 Number of Samples:",
            min_value=1,
            max_value=5,
            value=DEFAULT_NUM_SAMPLES,
            step=1,
            help="Determine how many structure samples to generate.",
        )

    # Generate Structures when button is clicked
    if st.session_state["progress_in_generating"]:
        # Clear previous structures
        st.session_state.structures = []
        st.session_state.trajectory = []

        # Initialize progress bar in the sidebar
        progress_placeholder = st.empty()
        progress_bar = progress_placeholder.progress(0)

        # Initialize loading animation
        image_placeholder = st.empty()
        with st.spinner("Generating structures..."):
            with image_placeholder:
                data_url = base64.b64encode(
                    open("assets/logo.gif", "rb").read()
                ).decode()
                image_placeholder.markdown(
                    f'<img src="data:image/gif;base64,{data_url}" width=100>',
                    unsafe_allow_html=True,
                )

        # Generate structures
        trajectory = []
        if DEMO:
            generator = demo_generator_structures(num_atoms, description, num_samples)
        else:
            generator = generator_structures_chemeleon(
                num_atoms, description, num_samples, use_client
            )
        for step, atoms_list in enumerate(generator):
            progress_bar.progress((step + 1) / TIMESTEPS)
            if step % TRAJECTORY_STEPS == 0 or step == TIMESTEPS - 1:
                st.session_state.structures = atoms_list
                trajectory.append(atoms_list)

        st.session_state.trajectory = trajectory

        # Remove the progress bar
        progress_placeholder.empty()

        # Remove the loading animation
        image_placeholder.empty()

        # Reset the progress state
        st.session_state["progress_in_generating"] = False

        # Display success message
        st.sidebar.success("✨ Structures generated successfully!")

    with st.sidebar:
        if st.button(
            "Generate Structures 🚀",
            disabled=st.session_state["progress_in_generating"],
        ):
            st.session_state["progress_in_generating"] = True
            st.rerun()

    # Check if structures are generated
    if st.session_state.structures:
        # Tabs for visualization
        tabs = st.tabs(["Structure Visualization", "Trajectory Analysis"])

        # Structure Visualization Tab
        with tabs[0]:
            col1, col2 = st.columns([1, 3])
            with col1:
                st.session_state.selected_sample_index = (
                    st.radio(
                        "Select Sample",
                        options=list(range(1, num_samples + 1)),
                        index=0,
                        help="Choose which sample to visualize.",
                    )
                    - 1
                )  # Adjust for zero-based indexing
                # Download file
                atoms = st.session_state.structures[
                    st.session_state.selected_sample_index
                ]
                buffer = BytesIO()
                write(buffer, atoms, format="cif")
                buffer.seek(0)
                st.download_button(
                    label="Download CIF File",
                    data=buffer,
                    file_name=f"{str(atoms.symbols)}.cif",
                    mime="chemical/cif",
                )
            with col2:
                atoms = st.session_state.structures[
                    st.session_state.selected_sample_index
                ]
                fig = visualize_structure(atoms)
                st.plotly_chart(fig, use_container_width=True)

        # Trajectory Analysis Tab
        with tabs[1]:
            if st.session_state.trajectory:
                trajectory = [
                    traj[st.session_state.selected_sample_index]
                    for traj in st.session_state.trajectory
                ]
                tabs_2 = st.tabs(["Animation", "Step View"])
                # Animation
                with tabs_2[0]:
                    fig = visualize_trajectory(trajectory)
                    st.plotly_chart(fig, use_container_width=True)
                # Slider
                with tabs_2[1]:
                    trajectory_index = st.slider(
                        "Select Trajectory Step",
                        min_value=0,
                        max_value=len(trajectory) - 1,
                        value=0,
                        step=1,
                        help="Navigate through different steps of the structure generation.",
                    )
                    selected_atoms = trajectory[trajectory_index]
                    trajectory_fig = visualize_structure(selected_atoms)
                    st.plotly_chart(trajectory_fig, use_container_width=True)
            else:
                st.info("No trajectory data available.")

    # Footer
    st.markdown(
        """
        <div style="text-align: center; color: grey; margin-top: 50px;">
            <p style="font-size: 14px; margin: 0;">
                Developed by 
                <a href="https://hspark1212.github.io" target="_blank">Hyunsoo Park</a>, 
                as a part of <a href="https://github.com/wmd-group" target="_blank">Materials Design Group</a> 
                at Imperial College London
            </p>
            <p>
                <a href="https://chemrxiv.org/engage/chemrxiv/article-details/6728e27cf9980725cf118177" target="_blank">Research Paper</a> | 
                <a href="https://github.com/hspark1212/chemeleon" target="_blank">Repository</a>
            </p>
        </div>
        """,
        unsafe_allow_html=True,
    )


if __name__ == "__main__":
    Fire(main)  # Usage example: streamlit run app/streamlit_app.py -- --use_client=True