File size: 8,612 Bytes
e71a2ba
dd71c9a
91ffd2c
776e43c
 
e71a2ba
 
776e43c
0669a02
aae4195
dd71c9a
 
aae4195
776e43c
91ffd2c
dd71c9a
aae4195
776e43c
 
b649ec8
aae4195
 
 
 
 
 
 
 
 
 
 
b649ec8
 
a4f8b32
b649ec8
 
 
 
 
 
 
a4f8b32
b649ec8
 
a4f8b32
b649ec8
 
 
 
a4f8b32
b649ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91ffd2c
 
 
 
 
 
dd71c9a
91ffd2c
 
dd71c9a
91ffd2c
 
 
dd71c9a
91ffd2c
 
 
 
 
dd71c9a
 
91ffd2c
 
 
 
 
 
dd71c9a
91ffd2c
 
 
dd71c9a
91ffd2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd71c9a
 
b649ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aae4195
 
 
 
b649ec8
aae4195
 
 
b649ec8
aae4195
 
b649ec8
aae4195
 
 
b649ec8
aae4195
 
 
b649ec8
aae4195
 
 
b649ec8
776e43c
 
 
b649ec8
 
dd71c9a
 
 
 
 
aae4195
b649ec8
aae4195
 
b649ec8
aae4195
0669a02
aae4195
 
 
 
 
 
 
 
 
 
 
 
 
776e43c
a4f8b32
aae4195
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import sys
import json
import argparse

import gradio as gr
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer

sys.path.insert(0, './petals/')
sys.path.insert(0, './personalized-chat-bot/')


from petals.client.remote_model import DistributedBloomForCausalLM
from personalized_chat_bot import PersonalizedChatBot, PersonalityManager
from models.personality_clustering import PersonalityClustering

MODEL_NAME = "bigscience/bloom-petals"
tokenizer_bloomd = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
model_bloomd = DistributedBloomForCausalLM.from_pretrained(MODEL_NAME, low_cpu_mem_usage=True)

tokenizer_DialoGPT_small = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
model_DialoGPT_small = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")

tokenizer_DialoGPT_medium = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model_DialoGPT_medium = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")

tokenizer_DialoGPT_large = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
model_DialoGPT_large = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")


def predict_common_bloom(model, tokenizer, input_text, history, person_description, number_of_new_tokens):
    new_user_input_ids = tokenizer.encode(input_text + '\n', return_tensors='pt')
    person_description_ids = tokenizer.encode(person_description + '\n', return_tensors='pt')
    print('Started predict_common_bloom')
    print(f'history: {history}')
    if history != []:
        bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
    else:
        bot_input_ids = new_user_input_ids
    print(f'bot_input_ids: {bot_input_ids}')
    input_with_desc_ids = torch.cat([person_description_ids, bot_input_ids], dim=-1)

    history = model.generate(
        input_with_desc_ids,
        max_new_tokens=number_of_new_tokens,
        pad_token_id=tokenizer.eos_token_id
    ).tolist()
    print(f'history: {history}')
    history[0] = history[0][len(person_description_ids[0]):]

    decode_all = tokenizer.decode(history[0][:len(bot_input_ids[0])])
    all_responses = tokenizer.decode(history[0][len(bot_input_ids[0]):]).split('\n')
    if all_responses[0]:
        decode_all += all_responses[0] + '\n'
    else:
        decode_all += all_responses[1] + '\n'
    print(f'decode_all: {decode_all}')

    history_new = tokenizer.encode(decode_all, return_tensors='pt')
    print(f'history_new: {history_new}')

    decode_all_split = decode_all.split('\n')
    print(f'decode_all_split: {decode_all_split}')

    response_new = [(decode_all_split[i], decode_all_split[i + 1]) for i in range(0, len(decode_all_split) - 1, 2)]
    print(f'response_new: {response_new}')

    return response_new, history_new


def load_config(path):
    with open(path, 'r') as f:
        config = json.load(f)
    return argparse.Namespace(**config)


def predict_cluster_bloom(model, tokenizer, input_text, history, person_description, number_of_new_tokens):
    personality_clustering = PersonalityClustering()
    personality_clustering.load('personalized-chat-bot/data/models/personality_clustering_500_paraphrase-MiniLM-L6-v2_k-means.pkl')

    hook = lambda dct: {int(k): v for k, v in dct.items()}
    with open('personalized-chat-bot/prompt_paths.json', 'r') as f:
        prompt_paths = json.load(f, object_hook=hook)

    pm = PersonalityManager(prompt_paths, personality_clustering)
    prompt_path, closest_persona = pm.get_prompt(person_description)
    print(f'The closest personality is: {closest_persona}')
    print('Wait a little longer...')
    config = load_config('personalized-chat-bot/scripts/config_176b.json')


    model = DistributedBloomForCausalLM.from_pretrained(
        config.MODEL_NAME,
        pre_seq_len=config.NUM_PREFIX_TOKENS,
        tuning_mode=config.TUNING_MODE,
        # max_new_tokens=number_of_new_tokens,
    ).to(config.DEVICE)

    generation_config = load_config('personalized-chat-bot/generation_config.json')
    generation_config.max_new_tokens=number_of_new_tokens
    print(f'generation_config: {generation_config}')

    tokenizer = transformers.BloomTokenizerFast.from_pretrained(config.MODEL_NAME)
    tokenizer.padding_side = 'right'
    tokenizer.model_max_length = config.MODEL_MAX_LENGTH

    chatbot = PersonalizedChatBot(model, tokenizer, generation_config=generation_config)
    chatbot.load_prompt('personalized-chat-bot/' + prompt_path)
    if history != []:
        input_text = tokenizer.decode(history[0]) + '\n' + input_text
    print(f'INPUT: {input_text}')
    output = chatbot.answer(input_text)
    all_text = input_text + '\n' + output
    print(f'all_text: {all_text}')

    history = tokenizer.encode(all_text,  return_tensors='pt')
    print(f'history: {history}')

    response = tokenizer.decode(history[0]).split("\n")
    response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)]
    print(f'response: {response}')

    return response, history


def predict_dialo_gpt(model, tokenizer, input_text, history, person_description, number_of_new_tokens):
    person_description_ids = tokenizer.encode(person_description + tokenizer.eos_token, return_tensors='pt')
    new_user_input_ids = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt')

    bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
    input_with_desc_ids = torch.cat([person_description_ids, bot_input_ids], dim=-1)
    history = model.generate(
        input_with_desc_ids,
        max_new_tokens=number_of_new_tokens,
        pad_token_id=tokenizer.eos_token_id
    ).tolist()
    history[0] = history[0][len(person_description_ids[0]):]
    response = tokenizer.decode(history[0]).split("<|endoftext|>")
    response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)]

    return response, history


def predict(
        input_text,
        history=None,
        person_description=None,
        number_of_new_tokens=10,
        model_name=None,
        del_hist=None
):

    if history is None or del_hist == 'delete history':
        history = []

    if model_name == 'DialoGPT-small':
        model = model_DialoGPT_small
        tokenizer = tokenizer_DialoGPT_small
        return predict_dialo_gpt(model, tokenizer, input_text, history, person_description, number_of_new_tokens)
    elif model_name == 'DialoGPT-medium':
        model = model_DialoGPT_medium
        tokenizer = tokenizer_DialoGPT_medium
        return predict_dialo_gpt(model, tokenizer, input_text, history, person_description, number_of_new_tokens)
    elif model_name == 'DialoGPT-large':
        model = model_DialoGPT_large
        tokenizer = tokenizer_DialoGPT_large
        return predict_dialo_gpt(model, tokenizer, input_text, history, person_description, number_of_new_tokens)
    elif model_name == 'bloom-petals':
        model = model_bloomd
        tokenizer = tokenizer_bloomd
        print(f'Lets go history: {history}')
        return predict_common_bloom(model, tokenizer, input_text, history, person_description, number_of_new_tokens)
    elif model_name == 'bloom-petals-cluster':
        model = model_bloomd
        tokenizer = tokenizer_bloomd
        print(f'Lets go history: {history}')
        return predict_cluster_bloom(model, tokenizer, input_text, history, person_description, number_of_new_tokens)
    else:
        model_name = 'DialoGPT-medium'
        model = model_DialoGPT_medium
        tokenizer = tokenizer_DialoGPT_medium
        return predict_dialo_gpt(model, tokenizer, input_text, history, person_description, number_of_new_tokens)


gr.Interface(
    fn=predict,
    inputs=[
        gr.Textbox(label='Input message', lines=1, placeholder="Enter your message..."),
        "state",
        gr.Textbox(label='Person Description', lines=2, placeholder="Enter a description of the person..."),
        gr.Slider(label='Number of new tokens', minimum=2, maximum=100, value=10),
        gr.Radio(
            label='Model name',
            choices=[
                'DialoGPT-small',
                'DialoGPT-medium',
                'DialoGPT-large',
                'bloom-petals',
                'bloom-petals-cluster',
            ]
        ),
        gr.Radio(
            label='Delete history',
            value="Don't delete history",
            choices=[
                'delete history',
                "Don't delete history"
            ]),
    ],
    outputs=[gr.Chatbot(label='History of the dialogue'), "state"],
).launch(),