Spaces:
Runtime error
Runtime error
Added Cluster Bloom
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import sys
|
2 |
import json
|
|
|
3 |
|
4 |
import gradio as gr
|
5 |
import torch
|
@@ -11,6 +12,7 @@ sys.path.insert(0, './personalized-chat-bot/')
|
|
11 |
|
12 |
|
13 |
from petals.client.remote_model import DistributedBloomForCausalLM
|
|
|
14 |
from models.personality_clustering import PersonalityClustering
|
15 |
|
16 |
MODEL_NAME = "bigscience/bloom-petals"
|
@@ -67,41 +69,59 @@ def predict_common_bloom(model, tokenizer, input_text, history, person_descripti
|
|
67 |
return response_new, history_new
|
68 |
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
def predict_cluster_bloom(model, tokenizer, input_text, history, person_description, number_of_new_tokens):
|
71 |
-
|
72 |
-
|
73 |
-
print(f'history: {history}')
|
74 |
-
if history != []:
|
75 |
-
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
|
76 |
-
else:
|
77 |
-
bot_input_ids = new_user_input_ids
|
78 |
-
print(f'bot_input_ids: {bot_input_ids}')
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
pad_token_id=tokenizer.eos_token_id
|
84 |
-
).tolist()
|
85 |
-
print(f'history: {history}')
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
decode_all += all_responses[1] + '\n'
|
93 |
-
print(f'decode_all: {decode_all}')
|
94 |
|
95 |
-
history_new = tokenizer.encode(decode_all, return_tensors='pt')
|
96 |
-
print(f'history_new: {history_new}')
|
97 |
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
100 |
|
101 |
-
|
102 |
-
|
|
|
103 |
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
|
107 |
def predict_dialo_gpt(model, tokenizer, input_text, history, person_description, number_of_new_tokens):
|
|
|
1 |
import sys
|
2 |
import json
|
3 |
+
import argparse
|
4 |
|
5 |
import gradio as gr
|
6 |
import torch
|
|
|
12 |
|
13 |
|
14 |
from petals.client.remote_model import DistributedBloomForCausalLM
|
15 |
+
from personalized_chat_bot import PersonalizedChatBot, PersonalityManager
|
16 |
from models.personality_clustering import PersonalityClustering
|
17 |
|
18 |
MODEL_NAME = "bigscience/bloom-petals"
|
|
|
69 |
return response_new, history_new
|
70 |
|
71 |
|
72 |
+
def load_config(path):
|
73 |
+
with open(path, 'r') as f:
|
74 |
+
config = json.load(f)
|
75 |
+
return argparse.Namespace(**config)
|
76 |
+
|
77 |
+
|
78 |
def predict_cluster_bloom(model, tokenizer, input_text, history, person_description, number_of_new_tokens):
|
79 |
+
personality_clustering = PersonalityClustering()
|
80 |
+
personality_clustering.load('personalized-chat-bot/data/models/personality_clustering_500_paraphrase-MiniLM-L6-v2_k-means.pkl')
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
hook = lambda dct: {int(k): v for k, v in dct.items()}
|
83 |
+
with open('personalized-chat-bot/prompt_paths.json', 'r') as f:
|
84 |
+
prompt_paths = json.load(f, object_hook=hook)
|
|
|
|
|
|
|
85 |
|
86 |
+
pm = PersonalityManager(prompt_paths, personality_clustering)
|
87 |
+
prompt_path, closest_persona = pm.get_prompt(person_description)
|
88 |
+
print(f'The closest personality is: {closest_persona}')
|
89 |
+
print('Wait a little longer...')
|
90 |
+
config = load_config('personalized-chat-bot/scripts/config_176b.json')
|
|
|
|
|
91 |
|
|
|
|
|
92 |
|
93 |
+
model = DistributedBloomForCausalLM.from_pretrained(
|
94 |
+
config.MODEL_NAME,
|
95 |
+
pre_seq_len=config.NUM_PREFIX_TOKENS,
|
96 |
+
tuning_mode=config.TUNING_MODE,
|
97 |
+
# max_new_tokens=number_of_new_tokens,
|
98 |
+
).to(config.DEVICE)
|
99 |
|
100 |
+
generation_config = load_config('personalized-chat-bot/generation_config.json')
|
101 |
+
generation_config.max_new_tokens=number_of_new_tokens
|
102 |
+
print(f'generation_config: {generation_config}')
|
103 |
|
104 |
+
tokenizer = transformers.BloomTokenizerFast.from_pretrained(config.MODEL_NAME)
|
105 |
+
tokenizer.padding_side = 'right'
|
106 |
+
tokenizer.model_max_length = config.MODEL_MAX_LENGTH
|
107 |
+
|
108 |
+
chatbot = PersonalizedChatBot(model, tokenizer, generation_config=generation_config)
|
109 |
+
chatbot.load_prompt('personalized-chat-bot/' + prompt_path)
|
110 |
+
if history != []:
|
111 |
+
input_text = tokenizer.decode(history[0]) + '\n' + input_text
|
112 |
+
print(f'INPUT: {input_text}')
|
113 |
+
output = chatbot.answer(input_text)
|
114 |
+
all_text = input_text + '\n' + output
|
115 |
+
print(f'all_text: {all_text}')
|
116 |
+
|
117 |
+
history = tokenizer.encode(all_text, return_tensors='pt')
|
118 |
+
print(f'history: {history}')
|
119 |
+
|
120 |
+
response = tokenizer.decode(history[0]).split("\n")
|
121 |
+
response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)]
|
122 |
+
print(f'response: {response}')
|
123 |
+
|
124 |
+
return response, history
|
125 |
|
126 |
|
127 |
def predict_dialo_gpt(model, tokenizer, input_text, history, person_description, number_of_new_tokens):
|