insta-maker / app.py
hivecorp's picture
Update app.py
3ed4a97 verified
import gradio as gr
from pydub import AudioSegment
import edge_tts
import os
import asyncio
import uuid
import re
from concurrent.futures import ThreadPoolExecutor
from typing import List, Tuple, Optional
import math
from dataclasses import dataclass
class TimingManager:
def __init__(self):
self.current_time = 0
self.segment_gap = 100 # ms gap between segments
def get_timing(self, duration):
start_time = self.current_time
end_time = start_time + duration
self.current_time = end_time + self.segment_gap
return start_time, end_time
def get_audio_length(audio_file):
audio = AudioSegment.from_file(audio_file)
return len(audio) / 1000
def format_time_ms(milliseconds):
seconds, ms = divmod(int(milliseconds), 1000)
mins, secs = divmod(seconds, 60)
hrs, mins = divmod(mins, 60)
return f"{hrs:02}:{mins:02}:{secs:02},{ms:03}"
@dataclass
class Segment:
id: int
text: str
start_time: int = 0
end_time: int = 0
duration: int = 0
audio: Optional[AudioSegment] = None
lines: List[str] = None # Add lines field for display purposes only
class TextProcessor:
def __init__(self, words_per_line: int, lines_per_segment: int):
self.words_per_line = words_per_line
self.lines_per_segment = lines_per_segment
self.min_segment_words = 3
self.max_segment_words = words_per_line * lines_per_segment * 1.5 # Allow 50% more for natural breaks
self.punctuation_weights = {
'.': 1.0, # Strong break
'!': 1.0,
'?': 1.0,
';': 0.8, # Medium-strong break
':': 0.7,
',': 0.5, # Medium break
'-': 0.3, # Weak break
'(': 0.2,
')': 0.2
}
def analyze_sentence_complexity(self, text: str) -> float:
"""Analyze sentence complexity to determine optimal segment length"""
words = text.split()
complexity = 1.0
# Adjust for sentence length
if len(words) > self.words_per_line * 2:
complexity *= 1.2
# Adjust for punctuation density
punct_count = sum(text.count(p) for p in self.punctuation_weights.keys())
complexity *= (1 + (punct_count / len(words)) * 0.5)
return complexity
def find_natural_breaks(self, text: str) -> List[Tuple[int, float]]:
"""Find natural break points with their weights"""
breaks = []
words = text.split()
for i, word in enumerate(words):
weight = 0
# Check for punctuation
for punct, punct_weight in self.punctuation_weights.items():
if word.endswith(punct):
weight = max(weight, punct_weight)
# Check for natural phrase boundaries
phrase_starters = {'however', 'therefore', 'moreover', 'furthermore', 'meanwhile', 'although', 'because'}
if i < len(words) - 1 and words[i+1].lower() in phrase_starters:
weight = max(weight, 0.6)
# Check for conjunctions at natural points
if i > self.min_segment_words:
conjunctions = {'and', 'but', 'or', 'nor', 'for', 'yet', 'so'}
if word.lower() in conjunctions:
weight = max(weight, 0.4)
if weight > 0:
breaks.append((i, weight))
return breaks
def split_into_segments(self, text: str) -> List[Segment]:
# Normalize text and add proper spacing around punctuation
text = re.sub(r'\s+', ' ', text.strip())
text = re.sub(r'([.!?,;:])\s*', r'\1 ', text)
text = re.sub(r'\s+([.!?,;:])', r'\1', text)
# First, split into major segments by strong punctuation
segments = []
current_segment = []
current_text = ""
words = text.split()
i = 0
while i < len(words):
complexity = self.analyze_sentence_complexity(' '.join(words[i:i + self.words_per_line * 2]))
breaks = self.find_natural_breaks(' '.join(words[i:i + int(self.max_segment_words * complexity)]))
# Find best break point
best_break = None
best_weight = 0
for break_idx, weight in breaks:
actual_idx = i + break_idx
if (actual_idx - i >= self.min_segment_words and
actual_idx - i <= self.max_segment_words):
if weight > best_weight:
best_break = break_idx
best_weight = weight
if best_break is None:
# If no good break found, use maximum length
best_break = min(self.words_per_line * self.lines_per_segment, len(words) - i)
# Create segment
segment_words = words[i:i + best_break + 1]
segment_text = ' '.join(segment_words)
# Split segment into lines
lines = self.split_into_lines(segment_text)
final_segment_text = '\n'.join(lines)
segments.append(Segment(
id=len(segments) + 1,
text=final_segment_text
))
i += best_break + 1
return segments
def split_into_lines(self, text: str) -> List[str]:
"""Split segment text into natural lines"""
words = text.split()
lines = []
current_line = []
word_count = 0
for word in words:
current_line.append(word)
word_count += 1
# Check for natural line breaks
is_break = (
word_count >= self.words_per_line or
any(word.endswith(p) for p in '.!?') or
(word_count >= self.words_per_line * 0.7 and
any(word.endswith(p) for p in ',;:'))
)
if is_break:
lines.append(' '.join(current_line))
current_line = []
word_count = 0
if current_line:
lines.append(' '.join(current_line))
return lines
async def process_segment_with_timing(segment: Segment, voice: str, rate: str, pitch: str) -> Segment:
"""Process a complete segment as a single TTS unit"""
audio_file = f"temp_segment_{segment.id}_{uuid.uuid4()}.wav"
try:
# Process the entire segment text as one unit, replacing newlines with spaces
segment_text = ' '.join(segment.text.split('\n'))
tts = edge_tts.Communicate(segment_text, voice, rate=rate, pitch=pitch)
await tts.save(audio_file)
segment.audio = AudioSegment.from_file(audio_file)
# Add small silence at start and end for natural spacing
silence = AudioSegment.silent(duration=50)
segment.audio = silence + segment.audio + silence
segment.duration = len(segment.audio)
return segment
finally:
if os.path.exists(audio_file):
os.remove(audio_file)
async def generate_accurate_srt(text: str, voice: str, rate: str, pitch: str, words_per_line: int, lines_per_segment: int) -> Tuple[str, str]:
processor = TextProcessor(words_per_line, lines_per_segment)
segments = processor.split_into_segments(text)
# Process segments sequentially for better timing control
processed_segments = []
current_time = 0
final_audio = AudioSegment.empty()
srt_content = ""
for segment in segments:
# Process segment
processed_segment = await process_segment_with_timing(segment, voice, rate, pitch)
# Calculate precise timing
processed_segment.start_time = current_time
processed_segment.end_time = current_time + processed_segment.duration
# Add to SRT with precise timing
srt_content += (
f"{processed_segment.id}\n"
f"{format_time_ms(processed_segment.start_time)} --> {format_time_ms(processed_segment.end_time)}\n"
f"{processed_segment.text}\n\n"
)
# Add to final audio with precise positioning
final_audio = final_audio.append(processed_segment.audio, crossfade=0)
# Update timing with precise gap
current_time = processed_segment.end_time
processed_segments.append(processed_segment)
# Export with high precision
unique_id = uuid.uuid4()
audio_path = f"final_audio_{unique_id}.mp3"
srt_path = f"final_subtitles_{unique_id}.srt"
# Export with high quality settings for precise timing
final_audio.export(
audio_path,
format="mp3",
bitrate="320k",
parameters=["-ar", "48000", "-ac", "2"]
)
with open(srt_path, "w", encoding='utf-8') as f:
f.write(srt_content)
return srt_path, audio_path
async def process_text(text, pitch, rate, voice, words_per_line, lines_per_segment):
# Format pitch and rate strings
pitch_str = f"{pitch:+d}Hz" if pitch != 0 else "+0Hz"
rate_str = f"{rate:+d}%" if rate != 0 else "+0%"
srt_path, audio_path = await generate_accurate_srt(
text,
voice_options[voice],
rate_str,
pitch_str,
words_per_line,
lines_per_segment
)
return srt_path, audio_path, audio_path
# Voice options dictionary (same as before)
voice_options = {
"Andrew Male": "en-US-AndrewNeural",
"Jenny Female": "en-US-JennyNeural",
"Guy Male": "en-US-GuyNeural",
"Ana Female": "en-US-AnaNeural",
"Aria Female": "en-US-AriaNeural",
"Brian Male": "en-US-BrianNeural",
"Christopher Male": "en-US-ChristopherNeural",
"Eric Male": "en-US-EricNeural",
"Michelle Male": "en-US-MichelleNeural",
"Roger Male": "en-US-RogerNeural",
"Natasha Female": "en-AU-NatashaNeural",
"William Male": "en-AU-WilliamNeural",
"Clara Female": "en-CA-ClaraNeural",
"Liam Female ": "en-CA-LiamNeural",
"Libby Female": "en-GB-LibbyNeural",
"Maisie": "en-GB-MaisieNeural",
"Ryan": "en-GB-RyanNeural",
"Sonia": "en-GB-SoniaNeural",
"Thomas": "en-GB-ThomasNeural",
"Sam": "en-HK-SamNeural",
"Yan": "en-HK-YanNeural",
"Connor": "en-IE-ConnorNeural",
"Emily": "en-IE-EmilyNeural",
"Neerja": "en-IN-NeerjaNeural",
"Prabhat": "en-IN-PrabhatNeural",
"Asilia": "en-KE-AsiliaNeural",
"Chilemba": "en-KE-ChilembaNeural",
"Abeo": "en-NG-AbeoNeural",
"Ezinne": "en-NG-EzinneNeural",
"Mitchell": "en-NZ-MitchellNeural",
"James": "en-PH-JamesNeural",
"Rosa": "en-PH-RosaNeural",
"Luna": "en-SG-LunaNeural",
"Wayne": "en-SG-WayneNeural",
"Elimu": "en-TZ-ElimuNeural",
"Imani": "en-TZ-ImaniNeural",
"Leah": "en-ZA-LeahNeural",
"Luke": "en-ZA-LukeNeural"
# Add other voices here...
}
# Create Gradio interface
app = gr.Interface(
fn=process_text,
inputs=[
gr.Textbox(label="Enter Text", lines=10),
gr.Slider(label="Pitch Adjustment (Hz)", minimum=-10, maximum=10, value=0, step=1),
gr.Slider(label="Speed Adjustment (%)", minimum=-25, maximum=25, value=0, step=1),
gr.Dropdown(label="Select Voice", choices=list(voice_options.keys()), value="Jenny Female"),
gr.Slider(label="Words per Line", minimum=3, maximum=12, value=6, step=1),
gr.Slider(label="Lines per Segment", minimum=1, maximum=4, value=2, step=1)
],
outputs=[
gr.File(label="Download SRT"),
gr.File(label="Download Audio"),
gr.Audio(label="Preview Audio")
],
title="Advanced TTS with Configurable SRT Generation",
description="Generate perfectly synchronized audio and subtitles with natural speech patterns."
)
app.launch()