Spaces:
Sleeping
Sleeping
File size: 11,982 Bytes
f7e1683 0ce84cc f4b5c65 0ce84cc 17f72f9 0ce84cc b2e635f f5e4024 17f72f9 f5e4024 17f72f9 f5e4024 b2e635f 17f72f9 b2e635f 17f72f9 b2e635f 17f72f9 b2e635f 17f72f9 0ce84cc 17f72f9 0ce84cc 17f72f9 b2e635f 17f72f9 b2e635f 17f72f9 0ce84cc 17f72f9 b2e635f 17f72f9 0ce84cc 17f72f9 b2e635f 17f72f9 b2e635f 17f72f9 0ce84cc b2e635f 17f72f9 b2e635f f4b5c65 b2e635f 17f72f9 b2e635f 17f72f9 b2e635f 0ce84cc 7697af6 b2e635f 0ce84cc f5e4024 0ce84cc a0f7708 4b97382 0ce84cc b2e635f 0ce84cc b2e635f c14c0c8 b2e635f 17f72f9 3ed4a97 b2e635f 17f72f9 0ce84cc b2e635f 3927c7f b2e635f 17f72f9 3927c7f 077e0e7 b2e635f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import gradio as gr
from pydub import AudioSegment
import edge_tts
import os
import asyncio
import uuid
import re
from concurrent.futures import ThreadPoolExecutor
from typing import List, Tuple, Optional
import math
from dataclasses import dataclass
class TimingManager:
def __init__(self):
self.current_time = 0
self.segment_gap = 100 # ms gap between segments
def get_timing(self, duration):
start_time = self.current_time
end_time = start_time + duration
self.current_time = end_time + self.segment_gap
return start_time, end_time
def get_audio_length(audio_file):
audio = AudioSegment.from_file(audio_file)
return len(audio) / 1000
def format_time_ms(milliseconds):
seconds, ms = divmod(int(milliseconds), 1000)
mins, secs = divmod(seconds, 60)
hrs, mins = divmod(mins, 60)
return f"{hrs:02}:{mins:02}:{secs:02},{ms:03}"
@dataclass
class Segment:
id: int
text: str
start_time: int = 0
end_time: int = 0
duration: int = 0
audio: Optional[AudioSegment] = None
lines: List[str] = None # Add lines field for display purposes only
class TextProcessor:
def __init__(self, words_per_line: int, lines_per_segment: int):
self.words_per_line = words_per_line
self.lines_per_segment = lines_per_segment
self.min_segment_words = 3
self.max_segment_words = words_per_line * lines_per_segment * 1.5 # Allow 50% more for natural breaks
self.punctuation_weights = {
'.': 1.0, # Strong break
'!': 1.0,
'?': 1.0,
';': 0.8, # Medium-strong break
':': 0.7,
',': 0.5, # Medium break
'-': 0.3, # Weak break
'(': 0.2,
')': 0.2
}
def analyze_sentence_complexity(self, text: str) -> float:
"""Analyze sentence complexity to determine optimal segment length"""
words = text.split()
complexity = 1.0
# Adjust for sentence length
if len(words) > self.words_per_line * 2:
complexity *= 1.2
# Adjust for punctuation density
punct_count = sum(text.count(p) for p in self.punctuation_weights.keys())
complexity *= (1 + (punct_count / len(words)) * 0.5)
return complexity
def find_natural_breaks(self, text: str) -> List[Tuple[int, float]]:
"""Find natural break points with their weights"""
breaks = []
words = text.split()
for i, word in enumerate(words):
weight = 0
# Check for punctuation
for punct, punct_weight in self.punctuation_weights.items():
if word.endswith(punct):
weight = max(weight, punct_weight)
# Check for natural phrase boundaries
phrase_starters = {'however', 'therefore', 'moreover', 'furthermore', 'meanwhile', 'although', 'because'}
if i < len(words) - 1 and words[i+1].lower() in phrase_starters:
weight = max(weight, 0.6)
# Check for conjunctions at natural points
if i > self.min_segment_words:
conjunctions = {'and', 'but', 'or', 'nor', 'for', 'yet', 'so'}
if word.lower() in conjunctions:
weight = max(weight, 0.4)
if weight > 0:
breaks.append((i, weight))
return breaks
def split_into_segments(self, text: str) -> List[Segment]:
# Normalize text and add proper spacing around punctuation
text = re.sub(r'\s+', ' ', text.strip())
text = re.sub(r'([.!?,;:])\s*', r'\1 ', text)
text = re.sub(r'\s+([.!?,;:])', r'\1', text)
# First, split into major segments by strong punctuation
segments = []
current_segment = []
current_text = ""
words = text.split()
i = 0
while i < len(words):
complexity = self.analyze_sentence_complexity(' '.join(words[i:i + self.words_per_line * 2]))
breaks = self.find_natural_breaks(' '.join(words[i:i + int(self.max_segment_words * complexity)]))
# Find best break point
best_break = None
best_weight = 0
for break_idx, weight in breaks:
actual_idx = i + break_idx
if (actual_idx - i >= self.min_segment_words and
actual_idx - i <= self.max_segment_words):
if weight > best_weight:
best_break = break_idx
best_weight = weight
if best_break is None:
# If no good break found, use maximum length
best_break = min(self.words_per_line * self.lines_per_segment, len(words) - i)
# Create segment
segment_words = words[i:i + best_break + 1]
segment_text = ' '.join(segment_words)
# Split segment into lines
lines = self.split_into_lines(segment_text)
final_segment_text = '\n'.join(lines)
segments.append(Segment(
id=len(segments) + 1,
text=final_segment_text
))
i += best_break + 1
return segments
def split_into_lines(self, text: str) -> List[str]:
"""Split segment text into natural lines"""
words = text.split()
lines = []
current_line = []
word_count = 0
for word in words:
current_line.append(word)
word_count += 1
# Check for natural line breaks
is_break = (
word_count >= self.words_per_line or
any(word.endswith(p) for p in '.!?') or
(word_count >= self.words_per_line * 0.7 and
any(word.endswith(p) for p in ',;:'))
)
if is_break:
lines.append(' '.join(current_line))
current_line = []
word_count = 0
if current_line:
lines.append(' '.join(current_line))
return lines
async def process_segment_with_timing(segment: Segment, voice: str, rate: str, pitch: str) -> Segment:
"""Process a complete segment as a single TTS unit"""
audio_file = f"temp_segment_{segment.id}_{uuid.uuid4()}.wav"
try:
# Process the entire segment text as one unit, replacing newlines with spaces
segment_text = ' '.join(segment.text.split('\n'))
tts = edge_tts.Communicate(segment_text, voice, rate=rate, pitch=pitch)
await tts.save(audio_file)
segment.audio = AudioSegment.from_file(audio_file)
# Add small silence at start and end for natural spacing
silence = AudioSegment.silent(duration=50)
segment.audio = silence + segment.audio + silence
segment.duration = len(segment.audio)
return segment
finally:
if os.path.exists(audio_file):
os.remove(audio_file)
async def generate_accurate_srt(text: str, voice: str, rate: str, pitch: str, words_per_line: int, lines_per_segment: int) -> Tuple[str, str]:
processor = TextProcessor(words_per_line, lines_per_segment)
segments = processor.split_into_segments(text)
# Process segments sequentially for better timing control
processed_segments = []
current_time = 0
final_audio = AudioSegment.empty()
srt_content = ""
for segment in segments:
# Process segment
processed_segment = await process_segment_with_timing(segment, voice, rate, pitch)
# Calculate precise timing
processed_segment.start_time = current_time
processed_segment.end_time = current_time + processed_segment.duration
# Add to SRT with precise timing
srt_content += (
f"{processed_segment.id}\n"
f"{format_time_ms(processed_segment.start_time)} --> {format_time_ms(processed_segment.end_time)}\n"
f"{processed_segment.text}\n\n"
)
# Add to final audio with precise positioning
final_audio = final_audio.append(processed_segment.audio, crossfade=0)
# Update timing with precise gap
current_time = processed_segment.end_time
processed_segments.append(processed_segment)
# Export with high precision
unique_id = uuid.uuid4()
audio_path = f"final_audio_{unique_id}.mp3"
srt_path = f"final_subtitles_{unique_id}.srt"
# Export with high quality settings for precise timing
final_audio.export(
audio_path,
format="mp3",
bitrate="320k",
parameters=["-ar", "48000", "-ac", "2"]
)
with open(srt_path, "w", encoding='utf-8') as f:
f.write(srt_content)
return srt_path, audio_path
async def process_text(text, pitch, rate, voice, words_per_line, lines_per_segment):
# Format pitch and rate strings
pitch_str = f"{pitch:+d}Hz" if pitch != 0 else "+0Hz"
rate_str = f"{rate:+d}%" if rate != 0 else "+0%"
srt_path, audio_path = await generate_accurate_srt(
text,
voice_options[voice],
rate_str,
pitch_str,
words_per_line,
lines_per_segment
)
return srt_path, audio_path, audio_path
# Voice options dictionary (same as before)
voice_options = {
"Andrew Male": "en-US-AndrewNeural",
"Jenny Female": "en-US-JennyNeural",
"Guy Male": "en-US-GuyNeural",
"Ana Female": "en-US-AnaNeural",
"Aria Female": "en-US-AriaNeural",
"Brian Male": "en-US-BrianNeural",
"Christopher Male": "en-US-ChristopherNeural",
"Eric Male": "en-US-EricNeural",
"Michelle Male": "en-US-MichelleNeural",
"Roger Male": "en-US-RogerNeural",
"Natasha Female": "en-AU-NatashaNeural",
"William Male": "en-AU-WilliamNeural",
"Clara Female": "en-CA-ClaraNeural",
"Liam Female ": "en-CA-LiamNeural",
"Libby Female": "en-GB-LibbyNeural",
"Maisie": "en-GB-MaisieNeural",
"Ryan": "en-GB-RyanNeural",
"Sonia": "en-GB-SoniaNeural",
"Thomas": "en-GB-ThomasNeural",
"Sam": "en-HK-SamNeural",
"Yan": "en-HK-YanNeural",
"Connor": "en-IE-ConnorNeural",
"Emily": "en-IE-EmilyNeural",
"Neerja": "en-IN-NeerjaNeural",
"Prabhat": "en-IN-PrabhatNeural",
"Asilia": "en-KE-AsiliaNeural",
"Chilemba": "en-KE-ChilembaNeural",
"Abeo": "en-NG-AbeoNeural",
"Ezinne": "en-NG-EzinneNeural",
"Mitchell": "en-NZ-MitchellNeural",
"James": "en-PH-JamesNeural",
"Rosa": "en-PH-RosaNeural",
"Luna": "en-SG-LunaNeural",
"Wayne": "en-SG-WayneNeural",
"Elimu": "en-TZ-ElimuNeural",
"Imani": "en-TZ-ImaniNeural",
"Leah": "en-ZA-LeahNeural",
"Luke": "en-ZA-LukeNeural"
# Add other voices here...
}
# Create Gradio interface
app = gr.Interface(
fn=process_text,
inputs=[
gr.Textbox(label="Enter Text", lines=10),
gr.Slider(label="Pitch Adjustment (Hz)", minimum=-10, maximum=10, value=0, step=1),
gr.Slider(label="Speed Adjustment (%)", minimum=-25, maximum=25, value=0, step=1),
gr.Dropdown(label="Select Voice", choices=list(voice_options.keys()), value="Jenny Female"),
gr.Slider(label="Words per Line", minimum=3, maximum=12, value=6, step=1),
gr.Slider(label="Lines per Segment", minimum=1, maximum=4, value=2, step=1)
],
outputs=[
gr.File(label="Download SRT"),
gr.File(label="Download Audio"),
gr.Audio(label="Preview Audio")
],
title="Advanced TTS with Configurable SRT Generation",
description="Generate perfectly synchronized audio and subtitles with natural speech patterns."
)
app.launch() |