Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,131 +2,98 @@ import gradio as gr
|
|
2 |
from pydub import AudioSegment
|
3 |
import edge_tts
|
4 |
import os
|
5 |
-
import wave
|
6 |
import asyncio
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
combined_audio = AudioSegment.empty()
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
#
|
44 |
-
for
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
tts = edge_tts.Communicate(batch_text, voice, rate="-25%")
|
51 |
-
await tts.save(mp3_file)
|
52 |
-
|
53 |
-
# Convert MP3 to WAV
|
54 |
-
batch_audio = AudioSegment.from_file(mp3_file, format="mp3")
|
55 |
-
batch_audio.export(wav_file, format="wav")
|
56 |
-
|
57 |
-
# Ensure WAV conversion succeeded and calculate duration
|
58 |
-
batch_duration = get_audio_length(wav_file)
|
59 |
-
srt_entries, cumulative_time = generate_accurate_srt(batch_text, cumulative_time, batch_index)
|
60 |
-
|
61 |
-
# Append entries and audio for the batch
|
62 |
-
total_srt_entries.extend(srt_entries)
|
63 |
combined_audio += batch_audio
|
64 |
-
|
65 |
-
|
66 |
-
# Clean up
|
67 |
-
os.remove(
|
68 |
-
|
69 |
# Export combined audio and SRT
|
70 |
combined_audio.export("final_audio.wav", format="wav")
|
71 |
with open("final_subtitles.srt", "w") as srt_file:
|
72 |
-
srt_file.write(
|
73 |
-
|
74 |
-
# Final validation check
|
75 |
-
validate_srt_against_audio("final_subtitles.srt", "final_audio.wav")
|
76 |
|
77 |
return "final_subtitles.srt", "final_audio.wav"
|
78 |
|
79 |
-
#
|
80 |
-
def
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
break
|
90 |
-
|
91 |
-
with open(srt_file_path, 'w') as file:
|
92 |
-
file.write(srt.compose(subtitles))
|
93 |
-
|
94 |
-
# Gradio function with error handling and markdown message
|
95 |
-
async def process_script(script_text, language, voice):
|
96 |
-
try:
|
97 |
-
srt_path, audio_path = await batch_process_srt_and_audio(script_text, voice)
|
98 |
-
return srt_path, audio_path, audio_path, ""
|
99 |
-
except Exception as e:
|
100 |
-
print(f"Error: {e}")
|
101 |
-
return None, None, None, "An error occurred. Please check the script text and try again."
|
102 |
-
|
103 |
-
# Dynamic voice selection based on language
|
104 |
-
def update_voice_options(language):
|
105 |
-
voices = {
|
106 |
-
"en-US": ["en-US-AndrewNeural", "en-US-JennyNeural"],
|
107 |
-
"es-ES": ["es-ES-AlvaroNeural", "es-ES-ElviraNeural"]
|
108 |
-
}
|
109 |
-
return gr.update(choices=voices.get(language, []), value=voices.get(language, [])[0])
|
110 |
-
|
111 |
-
# Gradio app setup
|
112 |
-
with gr.Blocks() as app:
|
113 |
-
gr.Markdown("# Text to Speech with Accurate SRT and Audio Generation")
|
114 |
-
|
115 |
-
language = gr.Dropdown(choices=["en-US", "es-ES"], label="Select Language", value="en-US")
|
116 |
-
voice = gr.Dropdown(choices=["en-US-AndrewNeural", "en-US-JennyNeural"], label="Select Voice")
|
117 |
-
|
118 |
-
language.change(fn=update_voice_options, inputs=language, outputs=voice)
|
119 |
-
|
120 |
-
script_text = gr.Textbox(label="Enter Script Text", lines=10)
|
121 |
-
|
122 |
-
outputs = [
|
123 |
gr.File(label="Download SRT File"),
|
124 |
gr.File(label="Download Audio File"),
|
125 |
-
gr.Audio(label="Play Audio")
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
submit_button = gr.Button("Generate Audio and SRT")
|
130 |
-
submit_button.click(process_script, inputs=[script_text, language, voice], outputs=outputs)
|
131 |
|
132 |
app.launch()
|
|
|
2 |
from pydub import AudioSegment
|
3 |
import edge_tts
|
4 |
import os
|
|
|
5 |
import asyncio
|
6 |
+
|
7 |
+
# Function to get the length of an audio file in seconds
|
8 |
+
def get_audio_length(audio_file):
|
9 |
+
audio = AudioSegment.from_file(audio_file)
|
10 |
+
return audio.duration_seconds
|
11 |
+
|
12 |
+
# Function to format time for SRT
|
13 |
+
def format_time(seconds):
|
14 |
+
millis = int((seconds % 1) * 1000)
|
15 |
+
seconds = int(seconds)
|
16 |
+
hrs = seconds // 3600
|
17 |
+
mins = (seconds % 3600) // 60
|
18 |
+
secs = seconds % 60
|
19 |
+
return f"{hrs:02}:{mins:02}:{secs:02},{millis:03}"
|
20 |
+
|
21 |
+
# Function to generate SRT with accurate timing per batch
|
22 |
+
async def generate_accurate_srt(batch_text, batch_num, start_offset):
|
23 |
+
audio_file = f"batch_{batch_num}_audio.wav"
|
24 |
|
25 |
+
# Generate the audio using edge-tts
|
26 |
+
tts = edge_tts.Communicate(batch_text, "en-US-AndrewNeural", rate="-25%")
|
27 |
+
await tts.save(audio_file)
|
28 |
+
|
29 |
+
# Get the actual length of the audio file
|
30 |
+
actual_length = get_audio_length(audio_file)
|
31 |
+
|
32 |
+
# Initialize SRT content
|
33 |
+
srt_content = ""
|
34 |
+
words = batch_text.split()
|
35 |
+
segment_duration = actual_length / len(words) * 10 # Adjusted for ~10 words per SRT segment
|
36 |
+
start_time = start_offset
|
37 |
+
|
38 |
+
# Build SRT content with accurate timing
|
39 |
+
for i in range(0, len(words), 10):
|
40 |
+
segment_words = words[i:i+10]
|
41 |
+
end_time = start_time + segment_duration
|
42 |
+
srt_content += f"{i // 10 + 1 + (batch_num * 100)}\n"
|
43 |
+
srt_content += f"{format_time(start_time)} --> {format_time(end_time)}\n"
|
44 |
+
srt_content += " ".join(segment_words) + "\n\n"
|
45 |
+
start_time = end_time
|
46 |
+
|
47 |
+
return srt_content, audio_file, start_time
|
48 |
+
|
49 |
+
# Batch processing function with concurrent processing and progress indicator
|
50 |
+
async def batch_process_srt_and_audio(script_text, progress=gr.Progress()):
|
51 |
+
batches = [script_text[i:i+500] for i in range(0, len(script_text), 500)]
|
52 |
+
all_srt_content = ""
|
53 |
combined_audio = AudioSegment.empty()
|
54 |
+
start_offset = 0.0 # Track cumulative time offset for SRT timing
|
55 |
+
|
56 |
+
# Prepare tasks for concurrent batch processing
|
57 |
+
tasks = [
|
58 |
+
generate_accurate_srt(batch_text, batch_num, start_offset)
|
59 |
+
for batch_num, batch_text in enumerate(batches)
|
60 |
+
]
|
61 |
|
62 |
+
# Execute tasks concurrently with progress tracking
|
63 |
+
for result in progress.track(asyncio.as_completed(tasks), total=len(tasks), description="Processing batches..."):
|
64 |
+
srt_content, audio_file, end_offset = await result
|
65 |
+
all_srt_content += srt_content
|
66 |
+
|
67 |
+
# Append the audio of each batch to the combined audio
|
68 |
+
batch_audio = AudioSegment.from_file(audio_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
combined_audio += batch_audio
|
70 |
+
start_offset = end_offset # Update the start offset for the next batch
|
71 |
+
|
72 |
+
# Clean up the individual batch audio file
|
73 |
+
os.remove(audio_file)
|
74 |
+
|
75 |
# Export combined audio and SRT
|
76 |
combined_audio.export("final_audio.wav", format="wav")
|
77 |
with open("final_subtitles.srt", "w") as srt_file:
|
78 |
+
srt_file.write(all_srt_content)
|
|
|
|
|
|
|
79 |
|
80 |
return "final_subtitles.srt", "final_audio.wav"
|
81 |
|
82 |
+
# Gradio interface function
|
83 |
+
async def process_script(script_text):
|
84 |
+
srt_path, audio_path = await batch_process_srt_and_audio(script_text)
|
85 |
+
return srt_path, audio_path, audio_path
|
86 |
+
|
87 |
+
# Gradio interface setup
|
88 |
+
app = gr.Interface(
|
89 |
+
fn=process_script,
|
90 |
+
inputs=gr.Textbox(label="Enter Script Text", lines=10),
|
91 |
+
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
gr.File(label="Download SRT File"),
|
93 |
gr.File(label="Download Audio File"),
|
94 |
+
gr.Audio(label="Play Audio")
|
95 |
+
],
|
96 |
+
description="Upload your script text, and the app will generate audio with en-US-AndrewNeural voice (Rate: -25%) and an accurate SRT file for download."
|
97 |
+
)
|
|
|
|
|
98 |
|
99 |
app.launch()
|