image2voice / app.py
histlearn's picture
Update app.py
d6ba35f verified
raw
history blame
7.79 kB
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
import torch
from gtts import gTTS
import spacy
import requests
import nltk.tree
import re
import os
# Carregar o modelo de português do spaCy
nlp = spacy.load("pt_core_news_sm")
# Chave para o LX-Parser
key = "eb159d39469d84f0ff47167a4d89cada"
# Funções de manipulação gramatical
def invert_adj_n(doc, tags):
frase = []
already = False
for i in range(len(doc)):
if already:
already = False
continue
if doc[i].tag_ != "PUNCT":
if tags[i] == "A":
if i + 1 < len(tags) and tags[i + 1] == "N":
frase.append(doc[i + 1].text)
frase.append(doc[i].text)
already = True
else:
frase.append(doc[i].text)
else:
frase.append(doc[i].text)
else:
frase.append(doc[i].text)
return frase
def adjust_adj(doc, tags):
frase = []
for i in range(len(doc)):
frase.append(doc[i].text)
if tags[i] == "A":
if i + 1 < len(tags) and tags[i + 1] == "A":
frase.append("e")
return frase
def adjust_art(doc, tags):
frase = []
already = False
for i in range(len(doc)):
if already:
already = False
continue
text = doc[i].text
if tags[i] == "ART" and text.lower() == "a":
if i + 1 < len(doc):
gender = doc[i + 1].morph.get("Gender")
number = doc[i + 1].morph.get("Number")
if gender and number:
if gender[0] == "Masc" and number[0] == "Sing":
frase.append("um")
elif gender[0] == "Fem" and number[0] == "Sing":
frase.append("uma")
elif gender[0] == "Masc" and number[0] != "Sing":
frase.append("os")
else:
frase.append("as")
else:
frase.append(text)
else:
frase.append(text)
else:
frase.append(text)
return frase
def create_sentence(doc, tags, frase):
tmp = frase
for i in range(len(doc)):
text = doc[i].text
if doc[i].is_sent_start:
tmp[i] = tmp[i].capitalize()
if doc[i].tag_ == "PUNCT":
tmp[i - 1] += text
return tmp
def get_productions(texto):
format = 'parentheses'
url = "https://portulanclarin.net/workbench/lx-parser/api/"
request_data = {
'method': 'parse',
'jsonrpc': '2.0',
'id': 0,
'params': {
'text': texto,
'format': format,
'key': key,
},
}
request = requests.post(url, json=request_data)
response_data = request.json()
if "error" in response_data:
print("Error:", response_data["error"])
return []
else:
result = response_data["result"]
productions = []
tree = nltk.tree.Tree.fromstring(result)
for tag in tree.productions():
if len(re.findall(r"'.*'", str(tag))) > 0:
productions.append(str(tag))
return productions
def get_tags(productions):
tags = []
for item in productions:
if isinstance(item, str):
tags.append(item[:item.find(' ->')])
else:
tags.append(item)
for item in tags:
if "'" in item:
tags.remove(item)
return tags
def reordenar_sentenca(sentenca):
if not sentenca.strip():
return sentenca
sentenca = sentenca.lower()
sentence = get_productions(sentenca)
tags = get_tags(sentence)
doc = nlp(sentenca)
if tags[0] != "ART":
sentenca = "A " + sentenca.strip()
sentence = get_productions(sentenca)
tags = get_tags(sentence)
doc = nlp(sentenca)
if not sentence:
return sentenca.strip()
aux = []
if len(tags) > 2 and tags[1] == "N" and tags[2] == "N":
aux = sentenca.split()
tmp = aux[1]
aux[1] = aux[2]
aux.insert(2, "de")
aux[3] = tmp
sentenca = " ".join(aux)
sentence = get_productions(sentenca)
tags = get_tags(sentence)
doc = nlp(sentenca)
frase = []
already = False
person = 3
tmp_doc = []
for token in doc:
tmp_doc.append(token)
frase = invert_adj_n(tmp_doc, tags)
nova_sentenca = ' '.join(frase)
productions = get_productions(nova_sentenca)
tags = get_tags(productions)
doc = nlp(nova_sentenca)
while nova_sentenca != sentenca:
frase = invert_adj_n(doc, tags)
sentenca = nova_sentenca
nova_sentenca = ' '.join(frase)
productions = get_productions(nova_sentenca)
tags = get_tags(productions)
doc = nlp(nova_sentenca)
frase = adjust_adj(doc, tags)
nova_sentenca = ' '.join(frase)
productions = get_productions(nova_sentenca)
tags = get_tags(productions)
doc = nlp(nova_sentenca)
while nova_sentenca != sentenca:
frase = adjust_adj(doc, tags)
sentenca = nova_sentenca
nova_sentenca = ' '.join(frase)
productions = get_productions(nova_sentenca)
tags = get_tags(productions)
doc = nlp(nova_sentenca)
frase = adjust_art(doc, tags)
sentenca = ' '.join(frase)
productions = get_productions(sentenca)
tags = get_tags(productions)
doc = nlp(sentenca)
frase = create_sentence(doc, tags, frase)
sentenca_normalizada = ""
for i in range(len(frase)):
sentenca_normalizada += frase[i] + " "
return sentenca_normalizada.strip()
def prepare_image(image_path):
image = Image.open(image_path).convert("RGB")
inputs = processor(images=image, return_tensors="pt").to(device)
return image, inputs.pixel_values
def generate_caption(pixel_values):
model.eval()
with torch.no_grad():
generated_ids = model.generate(
pixel_values=pixel_values,
max_length=50,
num_beams=4,
early_stopping=True,
no_repeat_ngram_size=2
)
return processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
def text_to_speech_gtts(text, lang='pt'):
tts = gTTS(text=text, lang=lang)
tts.save("output.mp3")
return "output.mp3"
# Carregar os modelos
processor = AutoProcessor.from_pretrained("histlearn/microsoft-git-portuguese-neuro-simbolic")
model = AutoModelForCausalLM.from_pretrained("histlearn/microsoft-git-portuguese-neuro-simbolic")
# Configurar o dispositivo (GPU ou CPU)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# Função principal para processar a imagem e gerar a voz
def process_image(image):
_, pixel_values = prepare_image(image)
caption_pt = generate_caption(pixel_values)
sentenca_normalizada = reordenar_sentenca(caption_pt)
audio_file = text_to_speech_gtts(sentenca_normalizada)
productions = get_productions(sentenca_normalizada)
return sentenca_normalizada, productions, audio_file
# Caminhos para as imagens de exemplo
example_image_paths = [
"example1.jpeg",
"example2.jpeg",
"example3.jpeg"
]
# Interface Gradio
iface = gr.Interface(
fn=process_image,
inputs=gr.Image(type="filepath"),
outputs=[gr.Textbox(label="Sentença Normalizada"), gr.Textbox(label="Classes Gramaticais"), gr.Audio(type="filepath", label="Áudio")],
examples=example_image_paths,
title="Image to Voice",
description="Gera uma descrição em português e a converte em voz a partir de uma imagem."
)
if __name__ == "__main__":
iface.launch()