Spaces:
Running
Running
File size: 7,786 Bytes
0037215 d6ba35f 0037215 d6ba35f 0037215 d6ba35f 0037215 d6ba35f 0037215 d6ba35f 0037215 d6ba35f 9159b0a d6ba35f 9159b0a 0037215 d6ba35f 9159b0a 0037215 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
import torch
from gtts import gTTS
import spacy
import requests
import nltk.tree
import re
import os
# Carregar o modelo de português do spaCy
nlp = spacy.load("pt_core_news_sm")
# Chave para o LX-Parser
key = "eb159d39469d84f0ff47167a4d89cada"
# Funções de manipulação gramatical
def invert_adj_n(doc, tags):
frase = []
already = False
for i in range(len(doc)):
if already:
already = False
continue
if doc[i].tag_ != "PUNCT":
if tags[i] == "A":
if i + 1 < len(tags) and tags[i + 1] == "N":
frase.append(doc[i + 1].text)
frase.append(doc[i].text)
already = True
else:
frase.append(doc[i].text)
else:
frase.append(doc[i].text)
else:
frase.append(doc[i].text)
return frase
def adjust_adj(doc, tags):
frase = []
for i in range(len(doc)):
frase.append(doc[i].text)
if tags[i] == "A":
if i + 1 < len(tags) and tags[i + 1] == "A":
frase.append("e")
return frase
def adjust_art(doc, tags):
frase = []
already = False
for i in range(len(doc)):
if already:
already = False
continue
text = doc[i].text
if tags[i] == "ART" and text.lower() == "a":
if i + 1 < len(doc):
gender = doc[i + 1].morph.get("Gender")
number = doc[i + 1].morph.get("Number")
if gender and number:
if gender[0] == "Masc" and number[0] == "Sing":
frase.append("um")
elif gender[0] == "Fem" and number[0] == "Sing":
frase.append("uma")
elif gender[0] == "Masc" and number[0] != "Sing":
frase.append("os")
else:
frase.append("as")
else:
frase.append(text)
else:
frase.append(text)
else:
frase.append(text)
return frase
def create_sentence(doc, tags, frase):
tmp = frase
for i in range(len(doc)):
text = doc[i].text
if doc[i].is_sent_start:
tmp[i] = tmp[i].capitalize()
if doc[i].tag_ == "PUNCT":
tmp[i - 1] += text
return tmp
def get_productions(texto):
format = 'parentheses'
url = "https://portulanclarin.net/workbench/lx-parser/api/"
request_data = {
'method': 'parse',
'jsonrpc': '2.0',
'id': 0,
'params': {
'text': texto,
'format': format,
'key': key,
},
}
request = requests.post(url, json=request_data)
response_data = request.json()
if "error" in response_data:
print("Error:", response_data["error"])
return []
else:
result = response_data["result"]
productions = []
tree = nltk.tree.Tree.fromstring(result)
for tag in tree.productions():
if len(re.findall(r"'.*'", str(tag))) > 0:
productions.append(str(tag))
return productions
def get_tags(productions):
tags = []
for item in productions:
if isinstance(item, str):
tags.append(item[:item.find(' ->')])
else:
tags.append(item)
for item in tags:
if "'" in item:
tags.remove(item)
return tags
def reordenar_sentenca(sentenca):
if not sentenca.strip():
return sentenca
sentenca = sentenca.lower()
sentence = get_productions(sentenca)
tags = get_tags(sentence)
doc = nlp(sentenca)
if tags[0] != "ART":
sentenca = "A " + sentenca.strip()
sentence = get_productions(sentenca)
tags = get_tags(sentence)
doc = nlp(sentenca)
if not sentence:
return sentenca.strip()
aux = []
if len(tags) > 2 and tags[1] == "N" and tags[2] == "N":
aux = sentenca.split()
tmp = aux[1]
aux[1] = aux[2]
aux.insert(2, "de")
aux[3] = tmp
sentenca = " ".join(aux)
sentence = get_productions(sentenca)
tags = get_tags(sentence)
doc = nlp(sentenca)
frase = []
already = False
person = 3
tmp_doc = []
for token in doc:
tmp_doc.append(token)
frase = invert_adj_n(tmp_doc, tags)
nova_sentenca = ' '.join(frase)
productions = get_productions(nova_sentenca)
tags = get_tags(productions)
doc = nlp(nova_sentenca)
while nova_sentenca != sentenca:
frase = invert_adj_n(doc, tags)
sentenca = nova_sentenca
nova_sentenca = ' '.join(frase)
productions = get_productions(nova_sentenca)
tags = get_tags(productions)
doc = nlp(nova_sentenca)
frase = adjust_adj(doc, tags)
nova_sentenca = ' '.join(frase)
productions = get_productions(nova_sentenca)
tags = get_tags(productions)
doc = nlp(nova_sentenca)
while nova_sentenca != sentenca:
frase = adjust_adj(doc, tags)
sentenca = nova_sentenca
nova_sentenca = ' '.join(frase)
productions = get_productions(nova_sentenca)
tags = get_tags(productions)
doc = nlp(nova_sentenca)
frase = adjust_art(doc, tags)
sentenca = ' '.join(frase)
productions = get_productions(sentenca)
tags = get_tags(productions)
doc = nlp(sentenca)
frase = create_sentence(doc, tags, frase)
sentenca_normalizada = ""
for i in range(len(frase)):
sentenca_normalizada += frase[i] + " "
return sentenca_normalizada.strip()
def prepare_image(image_path):
image = Image.open(image_path).convert("RGB")
inputs = processor(images=image, return_tensors="pt").to(device)
return image, inputs.pixel_values
def generate_caption(pixel_values):
model.eval()
with torch.no_grad():
generated_ids = model.generate(
pixel_values=pixel_values,
max_length=50,
num_beams=4,
early_stopping=True,
no_repeat_ngram_size=2
)
return processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
def text_to_speech_gtts(text, lang='pt'):
tts = gTTS(text=text, lang=lang)
tts.save("output.mp3")
return "output.mp3"
# Carregar os modelos
processor = AutoProcessor.from_pretrained("histlearn/microsoft-git-portuguese-neuro-simbolic")
model = AutoModelForCausalLM.from_pretrained("histlearn/microsoft-git-portuguese-neuro-simbolic")
# Configurar o dispositivo (GPU ou CPU)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# Função principal para processar a imagem e gerar a voz
def process_image(image):
_, pixel_values = prepare_image(image)
caption_pt = generate_caption(pixel_values)
sentenca_normalizada = reordenar_sentenca(caption_pt)
audio_file = text_to_speech_gtts(sentenca_normalizada)
productions = get_productions(sentenca_normalizada)
return sentenca_normalizada, productions, audio_file
# Caminhos para as imagens de exemplo
example_image_paths = [
"example1.jpeg",
"example2.jpeg",
"example3.jpeg"
]
# Interface Gradio
iface = gr.Interface(
fn=process_image,
inputs=gr.Image(type="filepath"),
outputs=[gr.Textbox(label="Sentença Normalizada"), gr.Textbox(label="Classes Gramaticais"), gr.Audio(type="filepath", label="Áudio")],
examples=example_image_paths,
title="Image to Voice",
description="Gera uma descrição em português e a converte em voz a partir de uma imagem."
)
if __name__ == "__main__":
iface.launch()
|