NomClass / app.py
hh1199's picture
Update app.py
62d6e64 verified
import gradio as gr
import numpy as np
from transformers import AutoTokenizer, AutoModel
from sklearn.metrics.pairwise import cosine_similarity
MODELS = {
"rubert-tiny2": "cointegrated/rubert-tiny2",
"sbert": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
"LaBSE": "sentence-transformers/LaBSE",
"ruRoberta": "sberbank-ai/ruRoberta-large"
}
PROMPT_TEMPLATES = {
"basic": "Товар: {item}. Категория:",
"examples": "Примеры:\n- Молоток → Инструменты\n- Морковь → Овощи\nТовар: {item} → ",
"strict": "Выбери категорию из [{categories}]. Товар: {item}. Категория:"
}
def get_embeddings(model, tokenizer, text):
inputs = tokenizer(text,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512)
outputs = model(**inputs)
return outputs.last_hidden_state[:, 0].detach().numpy()
def classify(model_name: str, prompt_type: str, item: str, categories: str) -> str:
tokenizer = AutoTokenizer.from_pretrained(MODELS[model_name])
model = AutoModel.from_pretrained(MODELS[model_name])
# Формируем промпт
prompt = PROMPT_TEMPLATES[prompt_type].format(
item=item,
categories=", ".join([c.strip() for c in categories.split(",")])
)
# Эмбеддинги
item_embedding = get_embeddings(model, tokenizer, prompt)
category_embeddings = [
get_embeddings(model, tokenizer, c.strip())
for c in categories.split(",")
]
# Сравнение
similarities = cosine_similarity(item_embedding, np.vstack(category_embeddings))[0]
best_idx = np.argmax(similarities)
return f"{categories.split(',')[best_idx].strip()} ({similarities[best_idx]:.2f})"
gr.Interface(
fn=classify,
inputs=[
gr.Dropdown(list(MODELS.keys()), label="Модель"),
gr.Dropdown(list(PROMPT_TEMPLATES.keys()), label="Шаблон промпта"),
gr.Textbox(label="Товар"),
gr.Textbox(label="Категории", value="Инструменты, Овощи, Техника")
],
outputs=gr.Textbox()
).launch()