File size: 2,281 Bytes
7ab3fbc
0803d70
 
 
7ab3fbc
0a1dfe8
 
0803d70
 
 
3ee972d
7ab3fbc
62d6e64
 
 
 
 
 
6d95508
62d6e64
6d95508
 
 
 
0803d70
 
 
62d6e64
0803d70
 
 
62d6e64
 
 
 
 
0a1dfe8
62d6e64
 
 
 
 
 
0a1dfe8
6d95508
 
0803d70
0a1dfe8
6d95508
1515adb
6d95508
7ab3fbc
 
62d6e64
 
 
 
86bd5a4
6d95508
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import gradio as gr
import numpy as np
from transformers import AutoTokenizer, AutoModel
from sklearn.metrics.pairwise import cosine_similarity

MODELS = {
    "rubert-tiny2": "cointegrated/rubert-tiny2",
    "sbert": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
    "LaBSE": "sentence-transformers/LaBSE",
    "ruRoberta": "sberbank-ai/ruRoberta-large"
}

PROMPT_TEMPLATES = {
    "basic": "Товар: {item}. Категория:",
    "examples": "Примеры:\n- Молоток → Инструменты\n- Морковь → Овощи\nТовар: {item} → ",
    "strict": "Выбери категорию из [{categories}]. Товар: {item}. Категория:"
}

def get_embeddings(model, tokenizer, text):
    inputs = tokenizer(text, 
                      padding=True, 
                      truncation=True, 
                      return_tensors="pt",
                      max_length=512)
    outputs = model(**inputs)
    return outputs.last_hidden_state[:, 0].detach().numpy()

def classify(model_name: str, prompt_type: str, item: str, categories: str) -> str:
    tokenizer = AutoTokenizer.from_pretrained(MODELS[model_name])
    model = AutoModel.from_pretrained(MODELS[model_name])
    
    # Формируем промпт
    prompt = PROMPT_TEMPLATES[prompt_type].format(
        item=item,
        categories=", ".join([c.strip() for c in categories.split(",")])
    )
    
    # Эмбеддинги
    item_embedding = get_embeddings(model, tokenizer, prompt)
    category_embeddings = [
        get_embeddings(model, tokenizer, c.strip()) 
        for c in categories.split(",")
    ]
    
    # Сравнение
    similarities = cosine_similarity(item_embedding, np.vstack(category_embeddings))[0]
    best_idx = np.argmax(similarities)
    
    return f"{categories.split(',')[best_idx].strip()} ({similarities[best_idx]:.2f})"

gr.Interface(
    fn=classify,
    inputs=[
        gr.Dropdown(list(MODELS.keys()), label="Модель"),
        gr.Dropdown(list(PROMPT_TEMPLATES.keys()), label="Шаблон промпта"),
        gr.Textbox(label="Товар"),
        gr.Textbox(label="Категории", value="Инструменты, Овощи, Техника")
    ],
    outputs=gr.Textbox()
).launch()