Spaces:
Runtime error
Runtime error
import gradio as gr | |
import matplotlib.pyplot as plt | |
from matplotlib_venn import venn3 | |
from io import BytesIO | |
from PIL import Image | |
import pandas as pd | |
def validate_inputs(A, B, C, AB, AC, BC, ABC, U): | |
errors = [] | |
if A < AB + AC - ABC: | |
errors.append("A no puede ser menor que la suma de AB y AC menos ABC.") | |
if B < AB + BC - ABC: | |
errors.append("B no puede ser menor que la suma de AB y BC menos ABC.") | |
if C < AC + BC - ABC: | |
errors.append("C no puede ser menor que la suma de AC y BC menos ABC.") | |
if U < A + B + C - AB - AC - BC + ABC: | |
errors.append("El conjunto universal U es menor que la suma total de los conjuntos y sus intersecciones.") | |
return errors | |
def suggest_intersections(A, B, C, U): | |
max_AB = min(A, B, U - (A + B + C - A - B)) | |
max_AC = min(A, C, U - (A + B + C - A - C)) | |
max_BC = min(B, C, U - (A + B + C - B - C)) | |
max_ABC = min(max_AB, max_AC, max_BC) | |
min_AB = max(0, A + B + C - A - B - C + ABC - U) | |
min_AC = max(0, A + C + B - A - C - B + ABC - U) | |
min_BC = max(0, B + C + A - B - C - A + ABC - U) | |
min_ABC = max(0, ABC - (A + B + C - AB - AC - BC + ABC)) | |
suggestions = { | |
"Mínimo valor sugerido para A ∩ B": min_AB, | |
"Máximo valor sugerido para A ∩ B": max_AB, | |
"Mínimo valor sugerido para A ∩ C": min_AC, | |
"Máximo valor sugerido para A ∩ C": max_AC, | |
"Mínimo valor sugerido para B ∩ C": min_BC, | |
"Máximo valor sugerido para B ∩ C": max_BC, | |
"Mínimo valor sugerido para A ∩ B ∩ C": min_ABC, | |
"Máximo valor sugerido para A ∩ B ∩ C": max_ABC, | |
} | |
return suggestions | |
def calculate_probabilities(A, B, C, AB, AC, BC, ABC, U): | |
total = U if U > 0 else (A + B + C - AB - AC - BC + ABC) | |
if total == 0: | |
return { | |
"P(A)": 0, | |
"P(B)": 0, | |
"P(C)": 0, | |
"P(A ∩ B)": 0, | |
"P(A ∩ C)": 0, | |
"P(B ∩ C)": 0, | |
"P(A ∩ B ∩ C)": 0, | |
} | |
P_A = A / total | |
P_B = B / total | |
P_C = C / total | |
P_AB = AB / total | |
P_AC = AC / total | |
P_BC = BC / total | |
P_ABC = ABC / total | |
PA_given_B = P_AB / P_B if P_B > 0 else 0 | |
PA_given_C = P_AC / P_C if P_C > 0 else 0 | |
PB_given_C = P_BC / P_C if P_C > 0 else 0 | |
formatted_probs = { | |
"P(A)": f"{P_A:.2%} ({A}/{total})", | |
"P(B)": f"{P_B:.2%} ({B}/{total})", | |
"P(C)": f"{P_C:.2%} ({C}/{total})", | |
"P(A ∩ B)": f"{P_AB:.2%} ({AB}/{total})", | |
"P(A ∩ C)": f"{P_AC:.2%} ({AC}/{total})", | |
"P(B ∩ C)": f"{P_BC:.2%} ({BC}/{total})", | |
"P(A ∩ B ∩ C)": f"{P_ABC:.2%} ({ABC}/{total})", | |
"P(A | B)": f"{PA_given_B:.2%}", | |
"P(A | C)": f"{PA_given_C:.2%}", | |
"P(B | C)": f"{PB_given_C:.2%}", | |
"U (Universal Set)": total, | |
"Complemento de A U B U C": U - (A + B + C - AB - AC - BC + ABC) | |
} | |
# Convert to DataFrame for better visualization | |
df = pd.DataFrame(list(formatted_probs.items()), columns=["Descripción", "Valor"]) | |
return df | |
# This function should be integrated with the main part of the app or interface | |
# It could be connected to a gradio UI, for example, to allow interactive use |