Spaces:
Runtime error
Runtime error
hedtorresca
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import matplotlib.pyplot as plt
|
|
3 |
from matplotlib_venn import venn3
|
4 |
from io import BytesIO
|
5 |
from PIL import Image
|
|
|
6 |
|
7 |
def validate_inputs(A, B, C, AB, AC, BC, ABC, U):
|
8 |
errors = []
|
@@ -21,11 +22,20 @@ def suggest_intersections(A, B, C, U):
|
|
21 |
max_AC = min(A, C, U - (A + B + C - A - C))
|
22 |
max_BC = min(B, C, U - (A + B + C - B - C))
|
23 |
max_ABC = min(max_AB, max_AC, max_BC)
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
25 |
suggestions = {
|
|
|
26 |
"Máximo valor sugerido para A ∩ B": max_AB,
|
|
|
27 |
"Máximo valor sugerido para A ∩ C": max_AC,
|
|
|
28 |
"Máximo valor sugerido para B ∩ C": max_BC,
|
|
|
29 |
"Máximo valor sugerido para A ∩ B ∩ C": max_ABC,
|
30 |
}
|
31 |
return suggestions
|
@@ -50,7 +60,11 @@ def calculate_probabilities(A, B, C, AB, AC, BC, ABC, U):
|
|
50 |
P_AC = AC / total
|
51 |
P_BC = BC / total
|
52 |
P_ABC = ABC / total
|
53 |
-
|
|
|
|
|
|
|
|
|
54 |
formatted_probs = {
|
55 |
"P(A)": f"{P_A:.2%} ({A}/{total})",
|
56 |
"P(B)": f"{P_B:.2%} ({B}/{total})",
|
@@ -59,48 +73,16 @@ def calculate_probabilities(A, B, C, AB, AC, BC, ABC, U):
|
|
59 |
"P(A ∩ C)": f"{P_AC:.2%} ({AC}/{total})",
|
60 |
"P(B ∩ C)": f"{P_BC:.2%} ({BC}/{total})",
|
61 |
"P(A ∩ B ∩ C)": f"{P_ABC:.2%} ({ABC}/{total})",
|
|
|
|
|
|
|
|
|
|
|
62 |
}
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
plt.figure(figsize=(8, 8))
|
68 |
-
venn = venn3(subsets=(A, B, AB, C, AC, BC, ABC), set_labels=('A', 'B', 'C'))
|
69 |
-
plt.title("Venn Diagram")
|
70 |
-
|
71 |
-
buf = BytesIO()
|
72 |
-
plt.savefig(buf, format='png')
|
73 |
-
buf.seek(0)
|
74 |
-
img = Image.open(buf)
|
75 |
-
return img
|
76 |
-
|
77 |
-
def main(A, B, C, AB, AC, BC, ABC, U):
|
78 |
-
errors = validate_inputs(A, B, C, AB, AC, BC, ABC, U)
|
79 |
-
if errors:
|
80 |
-
suggestions = suggest_intersections(A, B, C, U)
|
81 |
-
return None, {"error": "\n".join(errors), "sugerencias": suggestions}
|
82 |
-
|
83 |
-
venn_diagram = plot_venn(A, B, C, AB, AC, BC, ABC)
|
84 |
-
probabilities = calculate_probabilities(A, B, C, AB, AC, BC, ABC, U)
|
85 |
-
return venn_diagram, probabilities
|
86 |
-
|
87 |
-
iface = gr.Interface(
|
88 |
-
fn=main,
|
89 |
-
inputs=[
|
90 |
-
gr.Number(label="Cantidad en A"),
|
91 |
-
gr.Number(label="Cantidad en B"),
|
92 |
-
gr.Number(label="Cantidad en C"),
|
93 |
-
gr.Number(label="Cantidad en A ∩ B"),
|
94 |
-
gr.Number(label="Cantidad en A ∩ C"),
|
95 |
-
gr.Number(label="Cantidad en B ∩ C"),
|
96 |
-
gr.Number(label="Cantidad en A ∩ B ∩ C"),
|
97 |
-
gr.Number(label="Conjunto Universal (U)")
|
98 |
-
],
|
99 |
-
outputs=[
|
100 |
-
gr.Image(type="pil", label="Diagrama de Venn"),
|
101 |
-
gr.JSON(label="Resultados")
|
102 |
-
],
|
103 |
-
live=True
|
104 |
-
)
|
105 |
|
106 |
-
|
|
|
|
3 |
from matplotlib_venn import venn3
|
4 |
from io import BytesIO
|
5 |
from PIL import Image
|
6 |
+
import pandas as pd
|
7 |
|
8 |
def validate_inputs(A, B, C, AB, AC, BC, ABC, U):
|
9 |
errors = []
|
|
|
22 |
max_AC = min(A, C, U - (A + B + C - A - C))
|
23 |
max_BC = min(B, C, U - (A + B + C - B - C))
|
24 |
max_ABC = min(max_AB, max_AC, max_BC)
|
25 |
+
|
26 |
+
min_AB = max(0, A + B + C - A - B - C + ABC - U)
|
27 |
+
min_AC = max(0, A + C + B - A - C - B + ABC - U)
|
28 |
+
min_BC = max(0, B + C + A - B - C - A + ABC - U)
|
29 |
+
min_ABC = max(0, ABC - (A + B + C - AB - AC - BC + ABC))
|
30 |
+
|
31 |
suggestions = {
|
32 |
+
"Mínimo valor sugerido para A ∩ B": min_AB,
|
33 |
"Máximo valor sugerido para A ∩ B": max_AB,
|
34 |
+
"Mínimo valor sugerido para A ∩ C": min_AC,
|
35 |
"Máximo valor sugerido para A ∩ C": max_AC,
|
36 |
+
"Mínimo valor sugerido para B ∩ C": min_BC,
|
37 |
"Máximo valor sugerido para B ∩ C": max_BC,
|
38 |
+
"Mínimo valor sugerido para A ∩ B ∩ C": min_ABC,
|
39 |
"Máximo valor sugerido para A ∩ B ∩ C": max_ABC,
|
40 |
}
|
41 |
return suggestions
|
|
|
60 |
P_AC = AC / total
|
61 |
P_BC = BC / total
|
62 |
P_ABC = ABC / total
|
63 |
+
|
64 |
+
PA_given_B = P_AB / P_B if P_B > 0 else 0
|
65 |
+
PA_given_C = P_AC / P_C if P_C > 0 else 0
|
66 |
+
PB_given_C = P_BC / P_C if P_C > 0 else 0
|
67 |
+
|
68 |
formatted_probs = {
|
69 |
"P(A)": f"{P_A:.2%} ({A}/{total})",
|
70 |
"P(B)": f"{P_B:.2%} ({B}/{total})",
|
|
|
73 |
"P(A ∩ C)": f"{P_AC:.2%} ({AC}/{total})",
|
74 |
"P(B ∩ C)": f"{P_BC:.2%} ({BC}/{total})",
|
75 |
"P(A ∩ B ∩ C)": f"{P_ABC:.2%} ({ABC}/{total})",
|
76 |
+
"P(A | B)": f"{PA_given_B:.2%}",
|
77 |
+
"P(A | C)": f"{PA_given_C:.2%}",
|
78 |
+
"P(B | C)": f"{PB_given_C:.2%}",
|
79 |
+
"U (Universal Set)": total,
|
80 |
+
"Complemento de A U B U C": U - (A + B + C - AB - AC - BC + ABC)
|
81 |
}
|
82 |
|
83 |
+
# Convert to DataFrame for better visualization
|
84 |
+
df = pd.DataFrame(list(formatted_probs.items()), columns=["Descripción", "Valor"])
|
85 |
+
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
# This function should be integrated with the main part of the app or interface
|
88 |
+
# It could be connected to a gradio UI, for example, to allow interactive use
|