Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import gradio as gr | |
import argparse | |
import time | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from tqdm import tqdm | |
from PIL import Image | |
from torch.utils.data import DataLoader | |
from PIL import Image | |
from torchvision import transforms | |
from pipeline.resnet_csra import ResNet_CSRA | |
from pipeline.vit_csra import VIT_B16_224_CSRA, VIT_L16_224_CSRA, VIT_CSRA | |
from pipeline.dataset import DataSet | |
from torchvision.transforms import transforms | |
from utils.evaluation.eval import voc_classes, wider_classes, coco_classes, class_dict | |
torch.manual_seed(0) | |
if torch.cuda.is_available(): | |
torch.backends.cudnn.deterministic = True | |
# Device | |
# Use GPU if available | |
if torch.cuda.is_available(): | |
DEVICE = torch.device("cuda") | |
else: | |
DEVICE = torch.device("cpu") | |
# Make directories | |
os.system("mkdir ./models") | |
# Get model weights | |
if not os.path.exists("./models/msl_c_voc.pth"): | |
os.system( | |
"wget -O ./models/msl_c_voc.pth https://github.com/hasibzunair/msl-recognition/releases/download/v1.0-models/msl_c_voc.pth" | |
) | |
# Load model | |
model = ResNet_CSRA(num_heads=1, lam=0.1, num_classes=20) | |
normalize = transforms.Normalize(mean=[0, 0, 0], std=[1, 1, 1]) | |
model.to(DEVICE) | |
print("Loading weights from {}".format("./models/msl_c_voc.pth")) | |
model.load_state_dict(torch.load("./models/msl_c_voc.pth")) | |
# Inference! | |
def inference(img_path): | |
# read image | |
image = Image.open(img_path).convert("RGB") | |
# image pre-process | |
transforms_image = transforms.Compose([ | |
transforms.Resize((448, 448)), | |
transforms.ToTensor(), | |
normalize | |
]) | |
image = transforms_image(image) | |
image = image.unsqueeze(0) | |
# Predict | |
result = [] | |
model.eval() | |
with torch.no_grad(): | |
image = image.to(DEVICE) | |
logit = model(image).squeeze(0) | |
logit = nn.Sigmoid()(logit) | |
pos = torch.where(logit > 0.5)[0].cpu().numpy() | |
for k in pos: | |
result.append(str(class_dict["voc07"][k])) | |
return result | |
# Define ins outs placeholders | |
inputs = gr.inputs.Image(type="filepath", label="Input Image") | |
# Define style | |
title = "Learning to Recognize Occluded and Small Objects with Partial Inputs" | |
description = """ | |
Try this demo for <a href="https://github.com/hasibzunair/msl-recognition">MSL</a>, | |
introduced in <a href="ADD_PAPER_LINK">Learning to Recognize Occluded and Small Objects with Partial Inputs</a>. | |
\n\n MSL aims to explicitly focus on context from neighbouring regions around | |
objects. Further, this also enables to learn a distribution of association across classes. Ideally to handle situations in-the-wild where only part of some object class is visible, but where us humans might readily use context to infer the classes presence. | |
You can use this demo to get the a list of objects present in your images. | |
To use it, simply upload an image of your choice and hit submit. You will get one or more names of objects present | |
in your images from this list: ("aeroplane", "bicycle", "bird", "boat", "bottle", | |
"bus", "car", "cat", "chair", "cow", "diningtable", | |
"dog", "horse", "motorbike", "person", "pottedplant", | |
"sheep", "sofa", "train", "tvmonitor") | |
\n\n<a href="https://hasibzunair.github.io/msl-recognition/">Project Page</a> | |
""" | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1512.03385' target='_blank'>Learning to Recognize Occluded and Small Objects with Partial Inputs</a> | <a href='https://github.com/hasibzunair/msl-recognition' target='_blank'>Github Repo</a></p>" | |
voc_classes = ("aeroplane", "bicycle", "bird", "boat", "bottle", | |
"bus", "car", "cat", "chair", "cow", "diningtable", | |
"dog", "horse", "motorbike", "person", "pottedplant", | |
"sheep", "sofa", "train", "tvmonitor") | |
# Run inference | |
gr.Interface(inference, | |
inputs, | |
outputs="text", | |
examples=["demo_images/000001.jpg", "demo_images/000006.jpg", "demo_images/000009.jpg"], | |
title=title, | |
description=description, | |
article=article, | |
analytics_enabled=False).launch() | |