hasibzunair commited on
Commit
9629bd9
1 Parent(s): 952af7b
Files changed (1) hide show
  1. app.py +21 -3
app.py CHANGED
@@ -25,8 +25,11 @@ if torch.cuda.is_available():
25
  torch.backends.cudnn.deterministic = True
26
 
27
  # Device
28
- DEVICE = "cpu"
29
- print(DEVICE)
 
 
 
30
 
31
  # Make directories
32
  os.system("mkdir ./models")
@@ -78,7 +81,22 @@ inputs = gr.inputs.Image(type="filepath", label="Input Image")
78
 
79
  # Define style
80
  title = "Learning to Recognize Occluded and Small Objects with Partial Inputs"
81
- description = "TBA."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
  article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1512.03385' target='_blank'>Learning to Recognize Occluded and Small Objects with Partial Inputs</a> | <a href='https://github.com/hasibzunair/msl-recognition' target='_blank'>Github Repo</a></p>"
83
 
84
  voc_classes = ("aeroplane", "bicycle", "bird", "boat", "bottle",
 
25
  torch.backends.cudnn.deterministic = True
26
 
27
  # Device
28
+ # Use GPU if available
29
+ if torch.cuda.is_available():
30
+ DEVICE = torch.device("cuda")
31
+ else:
32
+ DEVICE = torch.device("cpu")
33
 
34
  # Make directories
35
  os.system("mkdir ./models")
 
81
 
82
  # Define style
83
  title = "Learning to Recognize Occluded and Small Objects with Partial Inputs"
84
+ description = """
85
+ Try this demo for <a href="https://github.com/hasibzunair/msl-recognition">MSL</a>,
86
+ introduced in <a href="ADD_PAPER_LINK">Learning to Recognize Occluded and Small Objects with Partial Inputs</a>.
87
+ \n\n MSL aims to explicitly focus on context from neighbouring regions around
88
+ objects. Further, this also enables to learn a distribution of association across classes. Ideally to handle situations in-the-wild where only part of some object class is visible, but where us humans might readily use context to infer the classes presence.
89
+
90
+ You can use this demo to get the a list of objects present in your images.
91
+
92
+ To use it, simply upload an image of your choice and hit submit. You will get one or more names of objects present
93
+ in your images from this list: ("aeroplane", "bicycle", "bird", "boat", "bottle",
94
+ "bus", "car", "cat", "chair", "cow", "diningtable",
95
+ "dog", "horse", "motorbike", "person", "pottedplant",
96
+ "sheep", "sofa", "train", "tvmonitor")
97
+
98
+ \n\n<a href="https://hasibzunair.github.io/msl-recognition/">Project Page</a>
99
+ """
100
  article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1512.03385' target='_blank'>Learning to Recognize Occluded and Small Objects with Partial Inputs</a> | <a href='https://github.com/hasibzunair/msl-recognition' target='_blank'>Github Repo</a></p>"
101
 
102
  voc_classes = ("aeroplane", "bicycle", "bird", "boat", "bottle",