Hasan Iqbal
Uncommented HuggingFace Spaces Configuration
b163a7c

A newer version of the Streamlit SDK is available: 1.41.1

Upgrade
metadata
title: OpenFactCheck Prelease
emoji: 
colorFrom: green
colorTo: purple
sdk: streamlit
app_file: src/openfactcheck/app/app.py
pinned: false

OpenFactCheck Logo

An Open-source Factuality Evaluation Demo for LLMs


Release Docs
License Python Version PyPI Latest Release arXiv DOI


OverviewInstallationUsageHuggingFace DemoDocumentation

Overview

OpenFactCheck is an open-source repository designed to facilitate the evaluation and enhancement of factuality in responses generated by large language models (LLMs). This project aims to integrate various fact-checking tools into a unified framework and provide comprehensive evaluation pipelines.

Installation

You can install the package from PyPI using pip:

pip install openfactcheck

Usage

First, you need to initialize the OpenFactCheckConfig object and then the OpenFactCheck object.

from openfactcheck import OpenFactCheck, OpenFactCheckConfig

# Initialize the OpenFactCheck object
config = OpenFactCheckConfig()
ofc = OpenFactCheck(config)

Response Evaluation

You can evaluate a response using the ResponseEvaluator class.

# Evaluate a response
result = ofc.ResponseEvaluator.evaluate(response: str)

LLM Evaluation

We provide FactQA, a dataset of 6480 questions for evaluating LLMs. Onc you have the responses from the LLM, you can evaluate them using the LLMEvaluator class.

# Evaluate an LLM
result = ofc.LLMEvaluator.evaluate(model_name: str,
                                   input_path: str)

Checker Evaluation

We provide FactBench, a dataset of 4507 claims for evaluating fact-checkers. Once you have the responses from the fact-checker, you can evaluate them using the CheckerEvaluator class.

# Evaluate a fact-checker
result = ofc.CheckerEvaluator.evaluate(checker_name: str,
                                       input_path: str)

Cite

If you use OpenFactCheck in your research, please cite the following:

@article{wang2024openfactcheck,
  title        = {OpenFactCheck: A Unified Framework for Factuality Evaluation of LLMs},
  author       = {Wang, Yuxia and Wang, Minghan and Iqbal, Hasan and Georgiev, Georgi and Geng, Jiahui and Nakov, Preslav},
  journal      = {arXiv preprint arXiv:2405.05583},
  year         = {2024}
}

@article{iqbal2024openfactcheck,
  title        = {OpenFactCheck: A Unified Framework for Factuality Evaluation of LLMs},
  author       = {Iqbal, Hasan and Wang, Yuxia and Wang, Minghan and Georgiev, Georgi and Geng, Jiahui and Gurevych, Iryna and Nakov, Preslav},
  journal      = {arXiv preprint arXiv:2408.11832},
  year         = {2024}
}

@software{hasan_iqbal_2024_13358665,
  author       = {Hasan Iqbal},
  title        = {hasaniqbal777/OpenFactCheck: v0.3.0},
  month        = {aug},
  year         = {2024},
  publisher    = {Zenodo},
  version      = {v0.3.0},
  doi          = {10.5281/zenodo.13358665},
  url          = {https://doi.org/10.5281/zenodo.13358665}
}