Hasan Iqbal
Added LLM Evaluation on Datasets
eca534f unverified
raw
history blame
1.74 kB
from openfactcheck.core.state import FactCheckerState
from openfactcheck.core.solver import StandardTaskSolver, Solver
from .factool_utils.chat_api import OpenAIChat
from .factool_utils.search_api import GoogleSerperAPIWrapper
from .factool_utils.prompt import QUERY_GENERATION_PROMPT
@Solver.register("factool_retriever", "claims", "claims_with_evidences")
class FactoolRetriever(StandardTaskSolver):
def __init__(self, args):
super().__init__(args)
self.gpt_model = self.global_config.get("factool_gpt_model", "gpt-3.5-turbo")
self.snippet_cnt = args.get("snippet_cnt", 10)
self.gpt = OpenAIChat(self.gpt_model)
self.query_prompt = QUERY_GENERATION_PROMPT
self.search_engine = GoogleSerperAPIWrapper(snippet_cnt=self.snippet_cnt)
def __call__(self, state: FactCheckerState, *args, **kwargs):
claims = state.get(self.input_name)
queries = self._query_generation(claims=claims)
evidences = self.search_engine.run(queries)
results = {}
for query, claim, evidence in zip(queries, claims, evidences):
merged_query = ' '.join(query) if len(query) > 1 else str(query)
results[claim] = [(merged_query, x['content']) for x in evidence]
state.set(self.output_name, results)
return True, state
def _query_generation(self, claims):
messages_list = [
[
{"role": "system", "content": self.query_prompt["system"]},
{
"role": "user",
"content": self.query_prompt["user"].format(input=claim),
},
]
for claim in claims
]
return self.gpt.run(messages_list, list)