Hasan Iqbal commited on
Commit
eca534f
·
unverified ·
1 Parent(s): cc39254

Added LLM Evaluation on Datasets

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .github/workflows/{main.yaml → release.yaml} +2 -2
  2. .github/workflows/release_patch.yaml +41 -0
  3. .gitignore +1 -1
  4. pyproject.toml +5 -0
  5. src/openfactcheck/app/__init__.py +0 -4
  6. src/openfactcheck/app/app.py +4 -3
  7. src/openfactcheck/app/evaluate_factchecker.py +13 -31
  8. src/openfactcheck/app/evaluate_llm.py +199 -0
  9. src/openfactcheck/app/evaluate_response.py +21 -6
  10. src/openfactcheck/core/base.py +61 -116
  11. src/openfactcheck/core/cli.py +8 -1
  12. src/openfactcheck/core/solver.py +12 -2
  13. src/openfactcheck/{factchecker → data}/__init__.py +0 -0
  14. src/openfactcheck/data/factcheck-bench.jsonl +0 -0
  15. src/openfactcheck/data/factoolqa.jsonl +0 -0
  16. src/openfactcheck/data/factscore-bio.jsonl +0 -0
  17. src/openfactcheck/data/felm-wk.jsonl +0 -0
  18. src/openfactcheck/data/freshqa.jsonl +0 -0
  19. src/openfactcheck/data/selfaware.jsonl +0 -0
  20. src/openfactcheck/data/snowballing.jsonl +0 -0
  21. src/openfactcheck/{solvers/factool/ftool_utils → evaluator}/__init__.py +0 -0
  22. src/openfactcheck/evaluator/factchecker/__init__.py +0 -0
  23. src/openfactcheck/{factchecker → evaluator/factchecker}/evaluate.py +38 -28
  24. src/openfactcheck/evaluator/llm/__init__.py +0 -0
  25. src/openfactcheck/evaluator/llm/evaluate.py +372 -0
  26. src/openfactcheck/evaluator/llm/evaluate_freetext.py +305 -0
  27. src/openfactcheck/evaluator/llm/evaluate_freshqa.py +308 -0
  28. src/openfactcheck/evaluator/llm/evaluate_selfaware.py +284 -0
  29. src/openfactcheck/evaluator/llm/evaluate_snowballing.py +184 -0
  30. src/openfactcheck/evaluator/llm/report.py +82 -0
  31. src/openfactcheck/evaluator/response/__init__.py +0 -0
  32. src/openfactcheck/evaluator/response/evaluate.py +160 -0
  33. src/openfactcheck/lib/config.py +11 -10
  34. src/openfactcheck/solvers/factool/all_pass_abstain_detector.py +4 -3
  35. src/openfactcheck/solvers/factool/concat_response_regenerator.py +6 -6
  36. src/openfactcheck/solvers/factool/factool_blackbox.py +8 -23
  37. src/openfactcheck/solvers/factool/factool_blackbox_post_editor.py +8 -48
  38. src/openfactcheck/solvers/factool/factool_claim_examiner.py +36 -59
  39. src/openfactcheck/solvers/factool/factool_decontextualizer.py +12 -29
  40. src/openfactcheck/solvers/factool/factool_evidence_retriever.py +18 -34
  41. src/openfactcheck/solvers/factool/factool_example.py +0 -18
  42. src/openfactcheck/solvers/factool/factool_post_editor.py +7 -10
  43. src/openfactcheck/solvers/factool/factool_utils/__init__.py +0 -0
  44. src/openfactcheck/solvers/factool/{ftool_utils → factool_utils}/chat_api.py +14 -40
  45. src/openfactcheck/solvers/factool/factool_utils/prompt.py +69 -0
  46. src/openfactcheck/solvers/factool/{ftool_utils → factool_utils}/search_api.py +0 -0
  47. src/openfactcheck/solvers/factool/ftool_utils/prompts.yaml +0 -67
  48. src/openfactcheck/solvers/webservice/__init__.py +0 -0
  49. src/openfactcheck/solvers/webservice/factool_utils/chat_api.py +1 -2
  50. src/openfactcheck/solvers/webservice/ftool_cp.py +0 -3
.github/workflows/{main.yaml → release.yaml} RENAMED
@@ -1,8 +1,8 @@
1
- name: CI/CD
2
 
3
  on:
4
  push:
5
- tags: ["v[0-9].[0-9]+.[0-9]+"]
6
  branches: ["*"]
7
 
8
  jobs:
 
1
+ name: Release
2
 
3
  on:
4
  push:
5
+ tags: ["v[0-9]+.[0-9].0"]
6
  branches: ["*"]
7
 
8
  jobs:
.github/workflows/release_patch.yaml ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Release Patch
2
+
3
+ on:
4
+ push:
5
+ tags: ["v[0-9]+.[0-9]+.[0-9]+"]
6
+ branches: ["*"]
7
+
8
+ workflow_dispatch:
9
+
10
+ jobs:
11
+ huggingface_deploy:
12
+ name: Deploy to Hugging Face
13
+ runs-on: ubuntu-latest
14
+ if: ${{ github.ref_type == 'tag' && startsWith(github.ref_name, 'v') }}
15
+ steps:
16
+ - name: Check out code
17
+ uses: actions/checkout@v3
18
+ with:
19
+ ref: ${{ github.head_ref }}
20
+ fetch-depth: 0
21
+
22
+ - name: Setup Git Config
23
+ run: |
24
+ git checkout main
25
+ git config --global user.email "[email protected]"
26
+ git config --global user.name "Hasan Iqbal"
27
+
28
+ - name: Enable HuggingFace Spaces Config
29
+ run: |
30
+ READMEFILE="README.md"
31
+ sed -i 's/<!--/---/g; s/-->/---/g' $READMEFILE
32
+ git add $READMEFILE
33
+ git commit -m "Uncommented HuggingFace Spaces Configuration" || echo "No changes to commit"
34
+
35
+ - name: Wait for 10 seconds
36
+ run: sleep 10
37
+
38
+ - name: Push to Hugging Face
39
+ env:
40
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
41
+ run: git push https://hasaniqbal777:[email protected]/spaces/hasaniqbal777/OpenFactCheck main --force
.gitignore CHANGED
@@ -12,7 +12,7 @@ ignore.*.tfvars
12
  # Project Specific
13
  DEVNOTES
14
  tmp/
15
- configs/dev*.json
16
 
17
  # Python Specific
18
  .venv/
 
12
  # Project Specific
13
  DEVNOTES
14
  tmp/
15
+ dev*.json
16
 
17
  # Python Specific
18
  .venv/
pyproject.toml CHANGED
@@ -8,6 +8,9 @@ version = "0.1.3"
8
  authors = [
9
  {name = "Hasan Iqbal", email = "[email protected]"},
10
  {name = "Yuxia Wang", email = "[email protected]"},
 
 
 
11
  ]
12
  maintainers = [
13
  {name = "Hasan Iqbal", email = "[email protected]"},
@@ -45,5 +48,7 @@ openfactcheck = [
45
  "templates/factchecker/*.jsonl",
46
  "templates/factchecker/*.csv",
47
  "templates/factchecker/**/*.jsonl",
 
 
48
  ]
49
 
 
8
  authors = [
9
  {name = "Hasan Iqbal", email = "[email protected]"},
10
  {name = "Yuxia Wang", email = "[email protected]"},
11
+ {name = "Minghan Wang", email = "[email protected]"},
12
+ {name = "Jiahui Geng", email = "[email protected]"},
13
+ {name = "Preslav Nakov", email = "[email protected]"}
14
  ]
15
  maintainers = [
16
  {name = "Hasan Iqbal", email = "[email protected]"},
 
48
  "templates/factchecker/*.jsonl",
49
  "templates/factchecker/*.csv",
50
  "templates/factchecker/**/*.jsonl",
51
+ "templates/llm/*.csv",
52
+ "templates/report/*.tex"
53
  ]
54
 
src/openfactcheck/app/__init__.py CHANGED
@@ -1,4 +0,0 @@
1
- import sys
2
-
3
- sys.path.append('../')
4
- sys.path.append("/home/user/app/src")
 
 
 
 
 
src/openfactcheck/app/app.py CHANGED
@@ -5,6 +5,7 @@ from streamlit_option_menu import option_menu
5
  from openfactcheck.core.base import OpenFactCheck, OpenFactCheckConfig
6
  from openfactcheck.app.sidebar import sidebar
7
  from openfactcheck.app.evaluate_response import evaluate_response
 
8
  from openfactcheck.app.evaluate_factchecker import evaluate_factchecker
9
  from openfactcheck.app.utils import footer
10
 
@@ -63,10 +64,10 @@ class App:
63
  # Load the selected page
64
  if selected == "Evaluate LLM Response":
65
  evaluate_response(self.ofc)
66
- # elif selected == "Evaluate LLM":
67
- # evaluate_llm()
68
  elif selected == "Evaluate FactChecker":
69
- evaluate_factchecker()
70
  # elif selected == "Leaderboards":
71
  # leaderboards()
72
  # else:
 
5
  from openfactcheck.core.base import OpenFactCheck, OpenFactCheckConfig
6
  from openfactcheck.app.sidebar import sidebar
7
  from openfactcheck.app.evaluate_response import evaluate_response
8
+ from openfactcheck.app.evaluate_llm import evaluate_llm
9
  from openfactcheck.app.evaluate_factchecker import evaluate_factchecker
10
  from openfactcheck.app.utils import footer
11
 
 
64
  # Load the selected page
65
  if selected == "Evaluate LLM Response":
66
  evaluate_response(self.ofc)
67
+ elif selected == "Evaluate LLM":
68
+ evaluate_llm(self.ofc)
69
  elif selected == "Evaluate FactChecker":
70
+ evaluate_factchecker(self.ofc)
71
  # elif selected == "Leaderboards":
72
  # leaderboards()
73
  # else:
src/openfactcheck/app/evaluate_factchecker.py CHANGED
@@ -8,17 +8,21 @@ import matplotlib.pyplot as plt
8
  from importlib import resources as pkg_resources
9
 
10
  from openfactcheck.app.utils import metric_card
11
- from openfactcheck.factchecker.evaluate import FactCheckerEvaluator
12
  from openfactcheck.templates import factchecker as templates_dir
13
 
14
  # Import solver configuration templates
15
  claims_templates_path = str(pkg_resources.files(templates_dir) / "claims.jsonl")
16
  documents_templates_path = str(pkg_resources.files(templates_dir) / "documents.jsonl")
17
 
18
- def evaluate_factchecker():
19
  """
20
  This function creates a Streamlit app to evaluate a Factchecker.
21
  """
 
 
 
 
22
  st.write("This is where you can evaluate the factuality of a FactChecker.")
23
 
24
  # Display the instructions
@@ -111,46 +115,24 @@ def evaluate_factchecker():
111
 
112
  # Display a waiting message
113
  with st.status("Evaluating factuality of the FactChecker...", expanded=True) as status:
114
- # Run the evaluation script
115
- fce = FactCheckerEvaluator(input=uploaded_data, eval_type="claims")
116
- result = fce()
117
  status.update(label="FactChecker evaluated...", state="complete", expanded=False)
118
 
119
  # Display the evaluation report
120
  st.write("### Evaluation report:")
121
-
122
- """
123
- {
124
- "True_as_positive": {
125
- "accuracy": 0.486,
126
- "precision": 0.71,
127
- "recall": 0.478,
128
- "F1": 0.571
129
- },
130
- "False_as_positive": {
131
- "accuracy": 0.486,
132
- "precision": 0.277,
133
- "recall": 0.506,
134
- "F1": 0.358
135
- },
136
- "total_time": 14430.0,
137
- "total_cost": 144.3,
138
- "num_samples": 1443
139
- }
140
- """
141
 
142
  col1, col2 = st.columns(2, gap="large")
143
  with col1:
144
  # Create the heatmap
145
  classes = ['True', 'False']
146
  fig = plt.figure()
147
- sns.heatmap(fce.confusion_matrix, annot=True, fmt="d", cmap="Blues", xticklabels=classes, yticklabels=classes)
148
  plt.ylabel('Actual Class')
149
  plt.xlabel('Predicted Class')
150
  st.pyplot(fig)
151
  with col2:
152
  # Display the metrics
153
- accuracy = fce.results["True_as_positive"]["accuracy"]
154
  if accuracy > 0.75 and accuracy <= 1:
155
  # Green background
156
  metric_card(label="Accuracy", value=f"{accuracy:.2%}", background_color="#D4EDDA", border_left_color="#28A745")
@@ -163,13 +145,13 @@ def evaluate_factchecker():
163
 
164
  sub_col1, sub_col2, sub_col3 = st.columns(3)
165
  with sub_col1:
166
- metric_card(label="Total Time", value=fce.results["total_time"])
167
  with sub_col2:
168
- metric_card(label="Total Cost", value=fce.results["total_cost"])
169
  with sub_col3:
170
- metric_card(label="Number of Samples", value=fce.results["num_samples"])
171
 
172
- st.text("Report:\n" + fce.classification_report)
173
 
174
 
175
 
 
8
  from importlib import resources as pkg_resources
9
 
10
  from openfactcheck.app.utils import metric_card
11
+ from openfactcheck.core.base import OpenFactCheck
12
  from openfactcheck.templates import factchecker as templates_dir
13
 
14
  # Import solver configuration templates
15
  claims_templates_path = str(pkg_resources.files(templates_dir) / "claims.jsonl")
16
  documents_templates_path = str(pkg_resources.files(templates_dir) / "documents.jsonl")
17
 
18
+ def evaluate_factchecker(ofc: OpenFactCheck):
19
  """
20
  This function creates a Streamlit app to evaluate a Factchecker.
21
  """
22
+
23
+ # Initialize the FactChecker Evaluator
24
+ fc_evaluator = ofc.FactCheckerEvaluator
25
+
26
  st.write("This is where you can evaluate the factuality of a FactChecker.")
27
 
28
  # Display the instructions
 
115
 
116
  # Display a waiting message
117
  with st.status("Evaluating factuality of the FactChecker...", expanded=True) as status:
118
+ result = fc_evaluator.evaluate(input_path=uploaded_data, eval_type="claims")
 
 
119
  status.update(label="FactChecker evaluated...", state="complete", expanded=False)
120
 
121
  # Display the evaluation report
122
  st.write("### Evaluation report:")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
 
124
  col1, col2 = st.columns(2, gap="large")
125
  with col1:
126
  # Create the heatmap
127
  classes = ['True', 'False']
128
  fig = plt.figure()
129
+ sns.heatmap(fc_evaluator.confusion_matrix, annot=True, fmt="d", cmap="Blues", xticklabels=classes, yticklabels=classes)
130
  plt.ylabel('Actual Class')
131
  plt.xlabel('Predicted Class')
132
  st.pyplot(fig)
133
  with col2:
134
  # Display the metrics
135
+ accuracy = fc_evaluator.results["True_as_positive"]["accuracy"]
136
  if accuracy > 0.75 and accuracy <= 1:
137
  # Green background
138
  metric_card(label="Accuracy", value=f"{accuracy:.2%}", background_color="#D4EDDA", border_left_color="#28A745")
 
145
 
146
  sub_col1, sub_col2, sub_col3 = st.columns(3)
147
  with sub_col1:
148
+ metric_card(label="Total Time", value=fc_evaluator.results["total_time"])
149
  with sub_col2:
150
+ metric_card(label="Total Cost", value=fc_evaluator.results["total_cost"])
151
  with sub_col3:
152
+ metric_card(label="Number of Samples", value=fc_evaluator.results["num_samples"])
153
 
154
+ st.text("Report:\n" + fc_evaluator.classification_report)
155
 
156
 
157
 
src/openfactcheck/app/evaluate_llm.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import uuid
3
+ import zipfile
4
+ import pandas as pd
5
+ import streamlit as st
6
+ from importlib import resources as pkg_resources
7
+
8
+ from openfactcheck.core.base import OpenFactCheck
9
+ from openfactcheck.app.utils import metric_card
10
+ from openfactcheck.templates import llm as templates_dir
11
+
12
+ # Import solver configuration templates
13
+ questions_templates_path = str(pkg_resources.files(templates_dir) / "questions.csv")
14
+
15
+ def evaluate_llm(ofc: OpenFactCheck):
16
+ """
17
+ This function creates a Streamlit app to evaluate the factuality of a LLM.
18
+ """
19
+ # Initialize the LLM Evaluator
20
+ llm_evaluator = ofc.LLMEvaluator
21
+
22
+ st.write("This is where you can evaluate the factuality of a LLM.")
23
+
24
+ # Display the instructions
25
+ st.write("Download the questions and instructions to evaluate the factuality of a LLM.")
26
+
27
+ # Check if the file exists
28
+ if os.path.exists(questions_templates_path):
29
+ # Create a ZIP file in memory
30
+ from io import BytesIO
31
+ memory_file = BytesIO()
32
+ with zipfile.ZipFile(memory_file, 'w') as zf:
33
+ # Define the name of the file within the ZIP archive
34
+ zip_path = os.path.basename(questions_templates_path) # 'questions.csv'
35
+ # Add file to the ZIP file
36
+ zf.write(questions_templates_path, arcname=zip_path)
37
+
38
+ # Reset pointer to start of the memory file
39
+ memory_file.seek(0)
40
+
41
+ # Create a download button and the file will be downloaded when clicked
42
+ btn = st.download_button(
43
+ label="Download",
44
+ data=memory_file,
45
+ file_name="openfactcheck_llm_benchmark.zip",
46
+ mime="application/zip"
47
+ )
48
+ else:
49
+ st.error("File not found.")
50
+
51
+ # Display the instructions
52
+ st.write("Upload the model responses as a JSON file below to evaluate the factuality.")
53
+
54
+ # Upload the model output
55
+ uploaded_file = st.file_uploader("Upload", type=["csv"], label_visibility="collapsed")
56
+
57
+ # Check if the file is uploaded
58
+ if uploaded_file is None:
59
+ st.info("Please upload a CSV file.")
60
+ return
61
+
62
+ # Check if the file is a CSV file
63
+ if uploaded_file.type != "text/csv":
64
+ st.error("Invalid file format. Please upload a CSV file.")
65
+ return
66
+
67
+ # Read the CSV file
68
+ uploaded_data = pd.read_csv(uploaded_file)
69
+
70
+ # Ask user to select datasets they want to evaluate on
71
+ st.write("Please select the datasets you want to evaluate the LLM on.")
72
+ datasets = st.multiselect("Select datasets", ["snowballing", "selfaware", "freshqa", "factoolqa", "felm-wk", "factcheck-bench", "factscore-bio"])
73
+
74
+ def update_first_name():
75
+ st.session_state.first_name = st.session_state.input_first_name
76
+
77
+ def update_last_name():
78
+ st.session_state.last_name = st.session_state.input_last_name
79
+
80
+ def update_email():
81
+ st.session_state.email = st.session_state.input_email
82
+
83
+ def update_organization():
84
+ st.session_state.organization = st.session_state.input_organization
85
+
86
+ def update_llm_model():
87
+ st.session_state.llm_model = st.session_state.input_llm_model
88
+
89
+ def update_include_in_leaderboard():
90
+ st.session_state.include_in_leaderboard = st.session_state.input_include_in_leaderboard
91
+
92
+ # Display instructions
93
+ st.write("Please provide the following information to be included in the leaderboard.")
94
+
95
+ # Create text inputs to enter the user information
96
+ st.session_state.id = uuid.uuid4().hex
97
+ st.text_input("First Name", key="input_first_name", on_change=update_first_name)
98
+ st.text_input("Last Name", key="input_last_name", on_change=update_last_name)
99
+ st.text_input("Email", key="input_email", on_change=update_email)
100
+ st.text_input("LLM Model Name", key="input_llm_model", on_change=update_llm_model)
101
+ st.text_input("Organization (Optional)", key="input_organization", on_change=update_organization)
102
+
103
+ # Create a checkbox to include the user in the leaderboard
104
+ st.checkbox("Please check this box if you want your LLM to be included in the leaderboard.",
105
+ key="input_include_in_leaderboard",
106
+ on_change=update_include_in_leaderboard)
107
+
108
+ if st.button("Evaluate LLM"):
109
+ # Display a success message
110
+ st.success("User information saved successfully.")
111
+
112
+ # Display an information message
113
+ st.info(f"""Please wait while we evaluate the factuality of the LLM.
114
+ You will be able to download the evaluation report shortly, if you can wait. The report will also be delivered to your email address.
115
+
116
+ Please note your ID {st.session_state.id}, This will be used to track your evaluation.
117
+ If the report is not available, please contact the administrator and provide your ID.""")
118
+
119
+ # Display a waiting message
120
+ with st.status("Evaluating factuality of the LLM...", expanded=True) as status:
121
+ # Evaluate the LLM
122
+ results = llm_evaluator.evaluate(model_name=st.session_state.llm_model,
123
+ input_path=uploaded_data,
124
+ datasets=datasets,
125
+ save_report=False)
126
+
127
+ # Get plots
128
+ st.write("Generating plots...")
129
+ plots = llm_evaluator.generate_plots(save_plots=False)
130
+
131
+ # Generate the evaluation report
132
+ st.write("Generating evaluation report...")
133
+ report_path = llm_evaluator.generate_report(report_path=f"{llm_evaluator.output_path}/{llm_evaluator.run_id}")
134
+
135
+ status.update(label="LLM evaluated...", state="complete", expanded=False)
136
+
137
+ # Display the plots
138
+ st.write("### Evaluation Report")
139
+
140
+ # If snowballing dataset is selected
141
+ if "snowballing" in datasets:
142
+ st.write("#### Evaluation on Snowballing Dataset")
143
+ col1, col2, col3 = st.columns(3)
144
+ with col1:
145
+ st.pyplot(plots["snowballing"]["barplot"])
146
+ with col2:
147
+ st.pyplot(plots["snowballing"]["cm"])
148
+ with col3:
149
+ pass
150
+
151
+ # If selfaware dataset is selected
152
+ if "selfaware" in datasets:
153
+ st.write("#### Evaluation on SelfAware Dataset")
154
+ col1, col2, col3 = st.columns(3)
155
+ with col1:
156
+ st.pyplot(plots["selfaware"]["barplot"])
157
+ with col2:
158
+ st.pyplot(plots["selfaware"]["cm"])
159
+ with col3:
160
+ pass
161
+
162
+ # If freshqa dataset is selected
163
+ if "freshqa" in datasets:
164
+ st.write("#### Evaluation on FreshQA Dataset")
165
+ col1, col2, col3 = st.columns(3)
166
+ with col1:
167
+ st.pyplot(plots["freshqa"]["piechart"])
168
+ with col2:
169
+ pass
170
+ with col3:
171
+ pass
172
+
173
+ # If any of the free-text datasets are selected
174
+ if any(dataset in ["factoolqa", "felm-wk", "factcheck-bench", "factscore-bio"] for dataset in datasets):
175
+ st.write("#### Evaluation on Free-Text Datasets")
176
+ st.pyplot(plots["freetext"]["barplot"])
177
+
178
+ # Generate the evaluation report
179
+ st.write("### Download Evaluation Report")
180
+ st.info("The report will also be sent to your email address.")
181
+
182
+ # Load the evaluation report
183
+ if os.path.exists(report_path):
184
+ with open(report_path, "rb") as file:
185
+ report_bytes = file.read()
186
+
187
+ # Display the download button
188
+ st.download_button(
189
+ label="Download",
190
+ data=report_bytes,
191
+ file_name="llm_evaluation_report.pdf",
192
+ mime="application/pdf"
193
+ )
194
+ else:
195
+ st.error("File not found.")
196
+
197
+
198
+
199
+
src/openfactcheck/app/evaluate_response.py CHANGED
@@ -22,6 +22,9 @@ def evaluate_response(ofc: OpenFactCheck):
22
  This function creates a Streamlit app to evaluate the factuality of a LLM response.
23
  """
24
 
 
 
 
25
  # Initialize the solvers
26
  st.session_state.claimprocessors = ofc.list_claimprocessors()
27
  st.session_state.retrievers = ofc.list_retrievers()
@@ -67,7 +70,7 @@ def evaluate_response(ofc: OpenFactCheck):
67
  # Evaluate the response
68
  st.write("Evaluating response...")
69
 
70
- response = ofc(st.session_state.input_text, stream=True)
71
  st.write("Response evaluated...")
72
 
73
  status.update(label="Factuality checked...", state="complete", expanded=False)
@@ -148,23 +151,33 @@ def evaluate_response(ofc: OpenFactCheck):
148
  claims=0
149
  false_claims = 0
150
  true_claims = 0
 
 
151
  for i, detail in enumerate(details):
152
- if detail.get("factuality", None) is not None:
 
 
153
  claim=detail.get("claim", "")
154
- if detail.get("factuality", None) == -1:
155
  detail_text += f'##### :red[{str(i+1) + ". " + extract_text(claim)}]'
156
  detail_text += "\n"
157
  claims += 1
158
  false_claims += 1
159
- elif detail.get("factuality", None) == 1:
160
  detail_text += f'##### :green[{str(i+1) + ". " + extract_text(claim)}]'
161
  detail_text += "\n"
162
  claims += 1
163
  true_claims += 1
 
 
 
 
 
164
  else:
165
- detail_text += f'##### :yellow[{str(i+1) + ". " + extract_text(claim)}]'
166
  detail_text += "\n"
167
  claims += 1
 
168
  else:
169
  st.error("Factuality not found in the verifier output.")
170
 
@@ -194,7 +207,7 @@ def evaluate_response(ofc: OpenFactCheck):
194
 
195
  # Generate formatted text with the overall factuality in Markdown format
196
  formatted_text = "### Factuality Detail\n"
197
- formatted_text += "Factuality of each claim is color-coded (red:[red means false], green:[green means true], yellow:[yellow means unknown]) as follows:\n"
198
  formatted_text += f"{detail_text}\n"
199
  formatted_text += "\n"
200
 
@@ -202,6 +215,8 @@ def evaluate_response(ofc: OpenFactCheck):
202
  with col2:
203
  metric_card(label="Supported Claims", value=true_claims, background_color="#D1ECF1", border_left_color="#17A2B8")
204
  metric_card(label="Conflicted Claims", value=false_claims, background_color="#D1ECF1", border_left_color="#17A2B8")
 
 
205
 
206
  # Get overall factuality (label)
207
  overall_factuality = output_text.get("label", "Unknown")
 
22
  This function creates a Streamlit app to evaluate the factuality of a LLM response.
23
  """
24
 
25
+ # Initialize the response_evaluator
26
+ response_evaluator = ofc.ResponseEvaluator
27
+
28
  # Initialize the solvers
29
  st.session_state.claimprocessors = ofc.list_claimprocessors()
30
  st.session_state.retrievers = ofc.list_retrievers()
 
70
  # Evaluate the response
71
  st.write("Evaluating response...")
72
 
73
+ response = response_evaluator.evaluate_streaming(st.session_state.input_text)
74
  st.write("Response evaluated...")
75
 
76
  status.update(label="Factuality checked...", state="complete", expanded=False)
 
151
  claims=0
152
  false_claims = 0
153
  true_claims = 0
154
+ controversial_claims = 0
155
+ unverified_claims = 0
156
  for i, detail in enumerate(details):
157
+ # Get factuality information
158
+ factuality = str(detail.get("factuality", None))
159
+ if factuality is not None:
160
  claim=detail.get("claim", "")
161
+ if factuality == "-1" or factuality == "False":
162
  detail_text += f'##### :red[{str(i+1) + ". " + extract_text(claim)}]'
163
  detail_text += "\n"
164
  claims += 1
165
  false_claims += 1
166
+ elif factuality == "1" or factuality == "True":
167
  detail_text += f'##### :green[{str(i+1) + ". " + extract_text(claim)}]'
168
  detail_text += "\n"
169
  claims += 1
170
  true_claims += 1
171
+ elif factuality == "0":
172
+ detail_text += f'##### :orange[{str(i+1) + ". " + extract_text(claim)}]'
173
+ detail_text += "\n"
174
+ claims += 1
175
+ controversial_claims += 1
176
  else:
177
+ detail_text += f'##### :purple[{str(i+1) + ". " + extract_text(claim)}]'
178
  detail_text += "\n"
179
  claims += 1
180
+ unverified_claims += 1
181
  else:
182
  st.error("Factuality not found in the verifier output.")
183
 
 
207
 
208
  # Generate formatted text with the overall factuality in Markdown format
209
  formatted_text = "### Factuality Detail\n"
210
+ formatted_text += "Factuality of each claim is color-coded (:red[red means false], :green[green means true], :orange[orange means controversial], :violet[violet means unverified]).\n"
211
  formatted_text += f"{detail_text}\n"
212
  formatted_text += "\n"
213
 
 
215
  with col2:
216
  metric_card(label="Supported Claims", value=true_claims, background_color="#D1ECF1", border_left_color="#17A2B8")
217
  metric_card(label="Conflicted Claims", value=false_claims, background_color="#D1ECF1", border_left_color="#17A2B8")
218
+ metric_card(label="Controversial Claims", value=controversial_claims, background_color="#D1ECF1", border_left_color="#17A2B8")
219
+ metric_card(label="Unverified Claims", value=unverified_claims, background_color="#D1ECF1", border_left_color="#17A2B8")
220
 
221
  # Get overall factuality (label)
222
  overall_factuality = output_text.get("label", "Unknown")
src/openfactcheck/core/base.py CHANGED
@@ -1,16 +1,18 @@
1
  import os
2
  import sys
3
- import uuid
4
- import tqdm
5
  import json
6
- import traceback
7
  from pathlib import Path
8
- from typing import Callable
9
 
10
  from openfactcheck.lib.logger import logger
 
11
  from openfactcheck.lib.config import OpenFactCheckConfig
12
  from openfactcheck.core.solver import SOLVER_REGISTRY, Solver
13
- from openfactcheck.core.state import FactCheckerState
 
 
 
 
14
 
15
  class OpenFactCheck:
16
  """
@@ -96,24 +98,50 @@ class OpenFactCheck:
96
  self.logger.info(f"Loaded solvers: {list(self.list_solvers().keys())}")
97
 
98
  # Initialize the pipeline
99
- self.pipeline = self.init_pipeline()
100
-
101
- self.logger.info("-------------- OpenFactCheck Initialized ----------------")
102
- self.logger.info("Pipeline:")
103
- for idx, (name, (solver, iname, oname)) in enumerate(self.pipeline.items()):
104
- self.logger.info(f"{idx}-{name} ({iname} -> {oname})")
105
- self.logger.info("---------------------------------------------------------")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
 
107
  @staticmethod
108
- def load_solvers(solver_paths):
109
  """
110
  Load solvers from the given paths
111
  """
112
- for solver_path in solver_paths:
113
- abs_path = Path(solver_path).resolve()
114
- if abs_path.is_dir():
115
- sys.path.append(str(abs_path.parent))
116
- Solver.load(str(abs_path), abs_path.name)
 
 
 
 
 
 
 
 
117
 
118
  @staticmethod
119
  def list_solvers():
@@ -173,9 +201,9 @@ class OpenFactCheck:
173
 
174
  # Initialize the solver
175
  solver_cls = SOLVER_REGISTRY[solver_name]
176
- solver_cls.input_name = args.get("input_name", solver_cls.input_name)
177
- solver_cls.output_name = args.get("output_name", solver_cls.output_name)
178
-
179
  logger.info(f"Solver {solver_cls(args)} initialized")
180
 
181
  return solver_cls(args), solver_cls.input_name, solver_cls.output_name
@@ -194,15 +222,19 @@ class OpenFactCheck:
194
  """
195
  Initialize the pipeline with the given configuration
196
  """
197
- pipeline = {}
198
  for required_solver in self.config.pipeline:
199
  if required_solver not in self.solver_configs:
200
  logger.error(f"{required_solver} not in solvers config")
201
  raise RuntimeError(f"{required_solver} not in solvers config")
202
  solver, input_name, output_name = self.init_solver(required_solver, self.solver_configs[required_solver])
203
- pipeline[required_solver] = (solver, input_name, output_name)
204
 
205
- return pipeline
 
 
 
 
206
 
207
  def init_pipeline_manually(self, pipeline: list):
208
  """
@@ -220,95 +252,8 @@ class OpenFactCheck:
220
  solver, input_name, output_name = self.init_solver(required_solver, self.solver_configs[required_solver])
221
  self.pipeline[required_solver] = (solver, input_name, output_name)
222
 
223
- def persist_output(self, state: FactCheckerState, idx, solver_name, cont, sample_name=0):
224
- result = {
225
- "idx": idx,
226
- "solver": solver_name,
227
- "continue": cont,
228
- "state": state.to_dict()
229
- }
230
- with open(os.path.join(self.output_path, f'{sample_name}.jsonl'), 'a', encoding="utf-8") as f:
231
- f.write(json.dumps(result, ensure_ascii=False) + '\n')
232
-
233
- def read_output(self, sample_name):
234
- """
235
- Read the output file for the given sample
236
- """
237
- with open(os.path.join(self.output_path, f'{sample_name}.jsonl'), 'r', encoding="utf-8") as f:
238
- return [json.loads(line) for line in f]
239
-
240
- def remove_output(self, sample_name):
241
- """
242
- Remove the output file for the given sample
243
- """
244
- os.remove(os.path.join(self.output_path, f'{sample_name}.jsonl'))
245
-
246
- def __call__(self, response: str, question: str = None, stream: bool = False, callback: Callable = None, **kwargs):
247
- """
248
- Evaluate the response using the pipeline
249
- """
250
-
251
- def evaluate_response():
252
- # Check if sample_name is provided in kwargs else generate a random one
253
- sample_name = kwargs.get("sample_name", str(uuid.uuid4().hex[:6]))
254
-
255
- # Initialize the state
256
- solver_output = FactCheckerState(question=question, response=response)
257
-
258
- # Initialize the output name
259
- output_name = "response"
260
- for idx, (name, (solver, input_name, output_name)) in tqdm.tqdm(enumerate(self.pipeline.items()),
261
- total=len(self.pipeline)):
262
- logger.info(f"Invoking solver: {idx}-{name}")
263
- logger.info(f"State content: {solver_output}")
264
-
265
- try:
266
- # Solver input is the output of the previous solver
267
- solver_input = solver_output
268
-
269
- # Run the solver
270
- cont, solver_output = solver(solver_input, **kwargs)
271
-
272
- # Persist the output
273
- logger.debug(f"Latest result: {solver_output}")
274
- if callback:
275
- callback(
276
- index=idx,
277
- sample_name=sample_name,
278
- solver_name=name,
279
- input_name=input_name,
280
- output_name=output_name,
281
- input=solver_input.__dict__,
282
- output=solver_output.__dict__,
283
- continue_run=cont
284
- )
285
-
286
- # Stream the output
287
- if stream:
288
- yield {
289
- "index": idx,
290
- "solver_name": name,
291
- "input_name": input_name,
292
- "output_name": output_name,
293
- "input": solver_input.__dict__,
294
- "output": solver_output.__dict__,
295
- "continue_run": cont
296
- }
297
-
298
- self.persist_output(solver_output, idx, name, cont, sample_name=sample_name)
299
-
300
- except:
301
- logger.error(f"Error at {traceback.format_exc()}")
302
- cont = False
303
- output_name = input_name
304
-
305
- # Break if the solver returns False
306
- if not cont:
307
- logger.info(f"Break at {name}")
308
- break
309
-
310
- if not stream:
311
- return solver_output.get(output_name)
312
-
313
- # Execute the generator if stream is True, otherwise process normally
314
- return evaluate_response()
 
1
  import os
2
  import sys
 
 
3
  import json
 
4
  from pathlib import Path
5
+ from typing import TYPE_CHECKING
6
 
7
  from openfactcheck.lib.logger import logger
8
+ from openfactcheck.core.state import FactCheckerState
9
  from openfactcheck.lib.config import OpenFactCheckConfig
10
  from openfactcheck.core.solver import SOLVER_REGISTRY, Solver
11
+
12
+ if TYPE_CHECKING:
13
+ from openfactcheck.evaluator.llm.evaluate import LLMEvaluator
14
+ from openfactcheck.evaluator.response.evaluate import ResponseEvaluator
15
+ from openfactcheck.evaluator.factchecker.evaluate import FactCheckerEvaluator
16
 
17
  class OpenFactCheck:
18
  """
 
98
  self.logger.info(f"Loaded solvers: {list(self.list_solvers().keys())}")
99
 
100
  # Initialize the pipeline
101
+ self.init_pipeline()
102
+
103
+ @property
104
+ def LLMEvaluator(self) -> 'LLMEvaluator':
105
+ """
106
+ Return the LLM Evaluator
107
+ """
108
+ from openfactcheck.evaluator.llm.evaluate import LLMEvaluator
109
+ return LLMEvaluator(self)
110
+
111
+ @property
112
+ def FactCheckerEvaluator(self) -> 'FactCheckerEvaluator':
113
+ """
114
+ Return the FactChecker Evaluator
115
+ """
116
+ from openfactcheck.evaluator.factchecker.evaluate import FactCheckerEvaluator
117
+ return FactCheckerEvaluator(self)
118
+
119
+ @property
120
+ def ResponseEvaluator(self) -> 'ResponseEvaluator':
121
+ """
122
+ Return the LLM Response Evaluator
123
+ """
124
+ from openfactcheck.evaluator.response.evaluate import ResponseEvaluator
125
+ return ResponseEvaluator(self)
126
 
127
  @staticmethod
128
+ def load_solvers(solver_paths: dict):
129
  """
130
  Load solvers from the given paths
131
  """
132
+ for key, value in solver_paths.items():
133
+ if key == "default":
134
+ for solver_path in value:
135
+ abs_path = Path(solver_path).resolve()
136
+ if abs_path.is_dir():
137
+ sys.path.append(str(abs_path.parent))
138
+ Solver.load(str(abs_path), f"{abs_path.parent.parent.name}.{abs_path.parent.name}.{abs_path.name}")
139
+ else:
140
+ for solver_path in value:
141
+ abs_path = Path(solver_path).resolve()
142
+ if abs_path.is_dir():
143
+ sys.path.append(str(abs_path.parent))
144
+ Solver.load(str(abs_path), abs_path.name)
145
 
146
  @staticmethod
147
  def list_solvers():
 
201
 
202
  # Initialize the solver
203
  solver_cls = SOLVER_REGISTRY[solver_name]
204
+ for key, value in args.items():
205
+ setattr(solver_cls, key, value)
206
+
207
  logger.info(f"Solver {solver_cls(args)} initialized")
208
 
209
  return solver_cls(args), solver_cls.input_name, solver_cls.output_name
 
222
  """
223
  Initialize the pipeline with the given configuration
224
  """
225
+ self.pipeline = {}
226
  for required_solver in self.config.pipeline:
227
  if required_solver not in self.solver_configs:
228
  logger.error(f"{required_solver} not in solvers config")
229
  raise RuntimeError(f"{required_solver} not in solvers config")
230
  solver, input_name, output_name = self.init_solver(required_solver, self.solver_configs[required_solver])
231
+ self.pipeline[required_solver] = (solver, input_name, output_name)
232
 
233
+ self.logger.info("-------------- OpenFactCheck Initialized ----------------")
234
+ self.logger.info("Pipeline:")
235
+ for idx, (name, (solver, iname, oname)) in enumerate(self.pipeline.items()):
236
+ self.logger.info(f"{idx}-{name} ({iname} -> {oname})")
237
+ self.logger.info("---------------------------------------------------------")
238
 
239
  def init_pipeline_manually(self, pipeline: list):
240
  """
 
252
  solver, input_name, output_name = self.init_solver(required_solver, self.solver_configs[required_solver])
253
  self.pipeline[required_solver] = (solver, input_name, output_name)
254
 
255
+ self.logger.info("-------------- OpenFactCheck Initialized ----------------")
256
+ self.logger.info("Pipeline:")
257
+ for idx, (name, (solver, iname, oname)) in enumerate(self.pipeline.items()):
258
+ self.logger.info(f"{idx}-{name} ({iname} -> {oname})")
259
+ self.logger.info("---------------------------------------------------------")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/openfactcheck/core/cli.py CHANGED
@@ -19,4 +19,11 @@ def parse_args():
19
  if __name__ == "__main__":
20
  args = parse_args()
21
 
22
- ofc = OpenFactCheck(OpenFactCheckConfig(args.config_path))
 
 
 
 
 
 
 
 
19
  if __name__ == "__main__":
20
  args = parse_args()
21
 
22
+ def callback(index, sample_name, solver_name, input_name, output_name, input, output, continue_run):
23
+ print(f"Callback: {index}, {sample_name}, {solver_name}, {input_name}, {output_name}, {input}, {output}, {continue_run}")
24
+
25
+ config = OpenFactCheckConfig(args.config_path)
26
+ results = OpenFactCheck(config).LLMEvaluator.evaluate(model_name="gpt2",
27
+ input_path="src/openfactcheck/templates/llm/responses_test.csv")
28
+
29
+
src/openfactcheck/core/solver.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import os
2
  import importlib
3
 
@@ -121,9 +122,18 @@ class Solver:
121
  # Get the module name
122
  module_name = namespace + "." + solver_name
123
 
 
 
 
124
  # Import the module
125
- logger.debug(f"Importing {module_name}")
126
- importlib.import_module(module_name)
 
 
 
 
 
 
127
 
128
  @staticmethod
129
  def load(path, namespace):
 
1
+ import sys
2
  import os
3
  import importlib
4
 
 
122
  # Get the module name
123
  module_name = namespace + "." + solver_name
124
 
125
+ # Log the full module name to debug
126
+ logger.debug(f"Attempting to import {module_name} from {file_path}")
127
+
128
  # Import the module
129
+ try:
130
+ importlib.import_module(module_name)
131
+ logger.debug(f"Successfully imported {module_name}")
132
+ except Exception as e:
133
+ logger.error(f"Failed to import {module_name}: {e}")
134
+ raise Exception(f"Failed to import {module_name}: {e}")
135
+
136
+ return module_name
137
 
138
  @staticmethod
139
  def load(path, namespace):
src/openfactcheck/{factchecker → data}/__init__.py RENAMED
File without changes
src/openfactcheck/data/factcheck-bench.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
src/openfactcheck/data/factoolqa.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
src/openfactcheck/data/factscore-bio.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
src/openfactcheck/data/felm-wk.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
src/openfactcheck/data/freshqa.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
src/openfactcheck/data/selfaware.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
src/openfactcheck/data/snowballing.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
src/openfactcheck/{solvers/factool/ftool_utils → evaluator}/__init__.py RENAMED
File without changes
src/openfactcheck/evaluator/factchecker/__init__.py ADDED
File without changes
src/openfactcheck/{factchecker → evaluator/factchecker}/evaluate.py RENAMED
@@ -1,18 +1,18 @@
 
1
  import pandas as pd
2
  from typing import Union
 
3
  from sklearn.metrics import accuracy_score, precision_score, f1_score, recall_score
4
  from sklearn.metrics import classification_report, confusion_matrix
5
 
6
  from openfactcheck.core.base import OpenFactCheck
7
- from importlib import resources as pkg_resources
8
-
9
- from openfactcheck.templates import factchecker as gold_templates_dir
10
 
11
  # Import solver configuration templates
12
- gold_claims_template_path = str(pkg_resources.files(gold_templates_dir) / "gold/claims.jsonl")
13
- gold_documents_template_path = str(pkg_resources.files(gold_templates_dir) / "gold/documents.jsonl")
14
 
15
- class FactCheckerEvaluator(OpenFactCheck):
16
  """
17
  This class is used to evaluate the performance of a FactChecker.
18
 
@@ -33,7 +33,7 @@ class FactCheckerEvaluator(OpenFactCheck):
33
 
34
  Attributes
35
  ----------
36
- input : Union[str, pd.DataFrame]
37
  The path to the CSV file or the DataFrame containing the FactChecker responses.
38
  gold_path : str
39
  The path to the gold standard file.
@@ -48,25 +48,20 @@ class FactCheckerEvaluator(OpenFactCheck):
48
 
49
  Methods
50
  -------
51
- __call__():
52
  This function evaluates the performance of the FactChecker.
53
  evaluate_binary_classification(y_true, y_pred, pos_label="yes"):
54
- This function evaluates the performance of a binary classification model.
55
  """
56
- def __init__(self, input: Union[str, pd.DataFrame], eval_type: str, gold_path: str = ""):
57
- if gold_path == "":
58
- if eval_type == "claims":
59
- gold_path = gold_claims_template_path
60
- elif eval_type == "documents":
61
- gold_path = gold_documents_template_path
62
- else:
63
- raise ValueError("Invalid evaluation type. Please provide a valid evaluation type.")
64
 
65
- self.input = input
66
- self.gold_path = gold_path
67
- self.eval_type = eval_type
68
-
69
- # Results
70
  self.results = None
71
  self.confusion_matrix = None
72
  self.classification_report = None
@@ -86,19 +81,34 @@ class FactCheckerEvaluator(OpenFactCheck):
86
  }
87
  return metrics
88
 
89
- def __call__(self):
90
  """
91
  This function evaluates the performance of the FactChecker.
92
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
93
  # Load the gold standard file
94
- df_gold = pd.read_json(self.gold_path, lines=True)
 
 
95
 
96
- # Check if the input is a DataFrame
97
- if isinstance(self.input, pd.DataFrame):
98
- df_input = self.input
99
  else:
100
  # Read the CSV file
101
- df_input = pd.read_csv(self.input)
102
 
103
  # Check if the FactChecker responses have the correct number of columns
104
  assert len(df_input.columns) == 3
 
1
+ import io
2
  import pandas as pd
3
  from typing import Union
4
+ from importlib import resources as pkg_resources
5
  from sklearn.metrics import accuracy_score, precision_score, f1_score, recall_score
6
  from sklearn.metrics import classification_report, confusion_matrix
7
 
8
  from openfactcheck.core.base import OpenFactCheck
9
+ from openfactcheck.templates import factchecker as templates_dir
 
 
10
 
11
  # Import solver configuration templates
12
+ gold_claims_template_path = str(pkg_resources.files(templates_dir) / "gold/claims.jsonl")
13
+ gold_documents_template_path = str(pkg_resources.files(templates_dir) / "gold/documents.jsonl")
14
 
15
+ class FactCheckerEvaluator():
16
  """
17
  This class is used to evaluate the performance of a FactChecker.
18
 
 
33
 
34
  Attributes
35
  ----------
36
+ input_path : Union[str, pd.DataFrame]
37
  The path to the CSV file or the DataFrame containing the FactChecker responses.
38
  gold_path : str
39
  The path to the gold standard file.
 
48
 
49
  Methods
50
  -------
51
+ evaluate(input_path: Union[str, pd.DataFrame], eval_type: str, gold_path: str = ""):
52
  This function evaluates the performance of the FactChecker.
53
  evaluate_binary_classification(y_true, y_pred, pos_label="yes"):
54
+ Evaluate the performance of a binary classification task.
55
  """
56
+ def __init__(self, ofc: OpenFactCheck):
57
+ """
58
+ Initialize the FactCheckerEvaluator object.
59
+ """
 
 
 
 
60
 
61
+ # Set the attributes
62
+ self.input_path = None
63
+ self.gold_path = None
64
+ self.eval_type = None
 
65
  self.results = None
66
  self.confusion_matrix = None
67
  self.classification_report = None
 
81
  }
82
  return metrics
83
 
84
+ def evaluate(self, input_path: Union[str, pd.DataFrame], eval_type: str, gold_path: str = ""):
85
  """
86
  This function evaluates the performance of the FactChecker.
87
  """
88
+ # Set the input_path, gold_path, and eval_type attributes
89
+ self.input_path = input_path
90
+ self.gold_path = gold_path
91
+ self.eval_type = eval_type
92
+
93
+ if self.gold_path == "":
94
+ if eval_type == "claims":
95
+ self.gold_path = gold_claims_template_path
96
+ elif eval_type == "documents":
97
+ self.gold_path = gold_documents_template_path
98
+ else:
99
+ raise ValueError("Invalid evaluation type. Please provide a valid evaluation type.")
100
+
101
  # Load the gold standard file
102
+ with open(self.gold_path, "r") as f:
103
+ json_data = f.read()
104
+ df_gold = pd.read_json(io.StringIO(json_data), lines=True)
105
 
106
+ # Check if the input_path is a DataFrame
107
+ if isinstance(self.input_path, pd.DataFrame):
108
+ df_input = self.input_path
109
  else:
110
  # Read the CSV file
111
+ df_input = pd.read_csv(self.input_path)
112
 
113
  # Check if the FactChecker responses have the correct number of columns
114
  assert len(df_input.columns) == 3
src/openfactcheck/evaluator/llm/__init__.py ADDED
File without changes
src/openfactcheck/evaluator/llm/evaluate.py ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import pandas as pd
4
+ from importlib import resources as pkg_resources
5
+
6
+ from openfactcheck.lib.logger import logger
7
+ from openfactcheck.core.base import OpenFactCheck
8
+ from openfactcheck.evaluator.llm.evaluate_snowballing import SnowballingEvaluator
9
+ from openfactcheck.evaluator.llm.evaluate_selfaware import SelfAwareEvaluator
10
+ from openfactcheck.evaluator.llm.evaluate_freshqa import FreshQAEvaluator
11
+ from openfactcheck.evaluator.llm.evaluate_freetext import FreeTextEvaluator
12
+ from openfactcheck.evaluator.llm.report import create_report
13
+
14
+ from openfactcheck import data as data_dir
15
+
16
+ # Import LLM Evaluation Dataset
17
+ default_dataset_path = str(pkg_resources.files(data_dir))
18
+ default_output_path = "tmp/output/llm_evaluator"
19
+
20
+ class LLMEvaluator(SnowballingEvaluator, SelfAwareEvaluator, FreshQAEvaluator, FreeTextEvaluator):
21
+ """
22
+ This class is used to evaluate the performance of a Language Model.
23
+
24
+ Parameters
25
+ ----------
26
+ model_name : str
27
+ The name of the Language Model.
28
+ input_path : Union[str, pd.DataFrame]
29
+ The path to the CSV file or the DataFrame containing the LLM responses.
30
+ The CSV file should have the following two columns:
31
+ - index: The index of the response.
32
+ - response: The response generated by the LLM.
33
+ output_path : str
34
+ The path to store the output files.
35
+ dataset_path : str
36
+ The path to the dataset file containing the questions.
37
+ datasets : list
38
+ The list of datasets to evaluate the LLM on.
39
+ analyze : bool
40
+ Whether to analyze the results.
41
+ save_plots : bool
42
+ Whether to save the plots.
43
+ save_report : bool
44
+ Whether to save the report.
45
+
46
+ Attributes
47
+ ----------
48
+ model_name : str
49
+ The name of the Language Model.
50
+ run_id : str
51
+ The unique identifier for the run.
52
+ input_path : Union[str, pd.DataFrame]
53
+ The path to the CSV file or the DataFrame containing the LLM responses.
54
+ output_path : str
55
+ The path to store the output files.
56
+ dataset_path : str
57
+ The path to the dataset file containing the questions.
58
+ datasets : list
59
+ The list of datasets to evaluate the LLM on.
60
+ combined_result : dict
61
+ The combined evaluation results for all datasets.
62
+
63
+ Methods
64
+ -------
65
+ evaluate(model_name: str, input_path: Union[str, pd.DataFrame], output_path: str = "", dataset_path: str = "", datasets: list = ["snowballing"], analyze: bool = True, save_plots: bool = True, save_report: bool = True):
66
+ This function evaluates the performance of the Language Model.
67
+ read_input():
68
+ This function reads the input file and dataset file and returns a DataFrame containing the combined data.
69
+ filter_responses(df: pd.DataFrame, dataset: str):
70
+ Filter the responses based on the dataset.
71
+ generate_plots(fig_path, save_plots=True):
72
+ Generate plots for the evaluation
73
+ """
74
+ def __init__(self, ofc: OpenFactCheck):
75
+ SnowballingEvaluator.__init__(self)
76
+ SelfAwareEvaluator.__init__(self)
77
+ FreshQAEvaluator.__init__(self)
78
+ FreeTextEvaluator.__init__(self, ofc)
79
+ self.logger = logger
80
+
81
+ # Set the attributes
82
+ self.model_name = None
83
+ self.run_id = None
84
+ self.input_path = None
85
+ self.dataset_path = None
86
+ self.output_path = None
87
+ self.datasets = None
88
+
89
+ self.combined_result = None
90
+ self.labels = None
91
+ self.predictions = None
92
+
93
+ self.logger.info(f"LLM Evaluator initialized with run_id: {self.run_id}")
94
+
95
+ def read_input(self):
96
+ """
97
+ This function reads the input file and dataset file and returns a DataFrame containing the combined data.
98
+ """
99
+
100
+ # Check if the input_path is a DataFrame
101
+ if isinstance(self.input_path, pd.DataFrame):
102
+ df_responses = self.input_path
103
+ else:
104
+ # Read the CSV file
105
+ self.logger.info(f"Reading the LLM responses from {self.input_path}...")
106
+ df_responses = pd.read_csv(self.input_path)
107
+
108
+ # Check the number of columns and if any response is missing
109
+ assert df_responses.shape[1] == 2, "The LLM responses should have 2 columns."
110
+
111
+ # Use the first column as index and rename the index and response column
112
+ df_responses.set_index(df_responses.columns[0], inplace=True)
113
+ df_responses.index.name = None
114
+ df_responses.columns = ["response"]
115
+
116
+ # Read the avaliable datasets
117
+ self.logger.info(f"Reading the dataset from {self.dataset_path}...")
118
+ df_dataset = pd.DataFrame()
119
+ # Loop through each file in the directory
120
+ for filename in os.listdir(self.dataset_path):
121
+ if filename.endswith('.jsonl'): # Check if the file is a JSONL file
122
+ file_path = os.path.join(self.dataset_path, filename)
123
+
124
+ logger.info(f"Reading {filename.split('.')[0]} dataset...")
125
+ # Read the JSONL file and append it to the combined DataFrame
126
+ df = pd.read_json(file_path, lines=True)
127
+ df_dataset = pd.concat([df_dataset, df], ignore_index=True)
128
+
129
+ # Combine the responses and questions
130
+ assert len(df_responses) == len(df_dataset), "The number of responses and questions should be the same."
131
+ df_combined = pd.concat([df_dataset, df_responses], axis=1)
132
+
133
+ return df_combined
134
+
135
+ @staticmethod
136
+ def filter_responses(df: pd.DataFrame, dataset: str):
137
+ logger.info(f"Filtering responses for dataset: {dataset}...")
138
+ # Filter the DataFrame based on the 'source' column directly
139
+ if dataset == "snowballing":
140
+ # Filter the DataFrame based on the 'source' column directly
141
+ filtered_df = df[df['source'] == dataset]
142
+
143
+ # Create a new DataFrame with only the required columns
144
+ responses_df = filtered_df[['topic', 'response']].copy()
145
+
146
+ # Convert the DataFrame to a list of dictionaries if needed
147
+ responses = responses_df.to_dict(orient='records')
148
+
149
+ elif dataset == "selfaware":
150
+ selfaware_subset = [
151
+ "selfaware-hotpot_train",
152
+ "selfaware-squadqa_train",
153
+ "selfaware-triviaqa_train",
154
+ "selfaware-squadqa_dev",
155
+ "selfaware-hotpot_dev",
156
+ "selfaware-triviaqa_dev",
157
+ "selfaware-SelfAware",
158
+ ]
159
+
160
+ responses = []
161
+ for k, row in df.iterrows():
162
+ if row["source"] in selfaware_subset:
163
+ responses.append({
164
+ "label_unanswerable": row["ability_to_test"].lstrip("answerable: ") == "False",
165
+ "response": row["response"]})
166
+
167
+ elif dataset == "freshqa":
168
+ responses = []
169
+ for k, row in df.iterrows():
170
+ if row["source"] == dataset:
171
+ responses.append(
172
+ {
173
+ "question": row["question"],
174
+ "reference_answer": row["reference_answer"],
175
+ "response": row["response"],
176
+ }
177
+ )
178
+
179
+ elif dataset in ["factoolqa", "felm-wk", "factcheck-bench"]:
180
+ responses = []
181
+ for k, row in df.iterrows():
182
+ if row["source"] == dataset:
183
+ responses.append(
184
+ {
185
+ "source": row["source"],
186
+ "prompt": row["prompt"],
187
+ "response": row["response"],
188
+ }
189
+ )
190
+
191
+ elif dataset == "factscore-bio":
192
+ factscore_subset = [
193
+ "factscore-labelled",
194
+ "factscore-unlabelled",
195
+ ]
196
+
197
+ responses = []
198
+ for k, row in df.iterrows():
199
+ if row["source"] in factscore_subset:
200
+ responses.append(
201
+ {
202
+ "source": row["source"],
203
+ "prompt": row["prompt"],
204
+ "response": row["response"],
205
+ }
206
+ )
207
+ else:
208
+ raise ValueError(f"Dataset {dataset} is not supported.")
209
+
210
+ return responses
211
+
212
+ def generate_plots(self, fig_path: str = "", save_plots=True):
213
+ # Create a bar plot of the accuracy of the LLM responses on the Snowballing dataset
214
+ # for each topic and the overall accuracy.
215
+ plots = {}
216
+ for dataset in self.combined_result:
217
+ if dataset == "snowballing":
218
+ plots["snowballing"] = {}
219
+ plots["snowballing"]["barplot"] = self.snowballing_barplot(self.combined_result[dataset], fig_path, save=save_plots)
220
+ plots["snowballing"]["cm"] = self.snowballing_cm(self.labels[dataset], self.predictions[dataset], fig_path, save=save_plots)
221
+
222
+ elif dataset == "selfaware":
223
+ plots["selfaware"] = {}
224
+ plots["selfaware"]["barplot"] = self.selfaware_barplot(self.combined_result[dataset], fig_path, save=save_plots)
225
+ plots["selfaware"]["cm"] = self.selfaware_cm(self.labels[dataset], self.predictions[dataset], fig_path, save=save_plots)
226
+
227
+ elif dataset == "freshqa":
228
+ plots["freshqa"] = {}
229
+ plots["freshqa"]["piechart"] = self.freshqa_piechart(self.combined_result[dataset], fig_path, save=save_plots)
230
+
231
+ elif dataset == "freetext":
232
+ plots["freetext"] = {}
233
+ plots["freetext"]["barplot"] = self.freetext_barplot(self.combined_result["freetext"], fig_path, save=save_plots)
234
+
235
+ return plots
236
+
237
+ def generate_report(self, report_path: str):
238
+ # Create a LaTeX report and return the path to the generated PDF
239
+ return create_report(self.model_name, report_path)
240
+
241
+ def evaluate(self,
242
+ model_name: str,
243
+ input_path: str,
244
+ output_path: str = "",
245
+ dataset_path: str = "",
246
+ datasets: list = [
247
+ "snowballing",
248
+ "selfaware",
249
+ "freshqa",
250
+ "factoolqa",
251
+ "felm-wk",
252
+ "factcheck-bench",
253
+ "factscore-bio"
254
+ ],
255
+ analyze: bool = True,
256
+ save_report: bool = True):
257
+ self.logger.info("Evaluating LLM responses...")
258
+
259
+ # Set the attributes
260
+ self.model_name = model_name
261
+ self.run_id = "123"
262
+ self.input_path = input_path
263
+ self.output_path = output_path
264
+ self.dataset_path = dataset_path
265
+ self.datasets = datasets
266
+
267
+ # Check if the output path is provided (if not, use the default template)
268
+ if self.output_path == "":
269
+ self.output_path = default_output_path
270
+
271
+ # Check if the output path exists (if not, create it)
272
+ if not os.path.exists(self.output_path):
273
+ os.makedirs(f"{self.output_path}/{self.run_id}")
274
+
275
+ # Check if the questions path is provided (if not, use the default template)
276
+ if self.dataset_path == "":
277
+ self.dataset_path = default_dataset_path
278
+
279
+ # Read the input
280
+ self.logger.info("Reading the input...")
281
+ df = self.read_input()
282
+ self.logger.info(f"Combined data contains {len(df)} rows")
283
+
284
+ # Evaluate model responses over each dataset
285
+ self.combined_result = {}
286
+ self.labels = {}
287
+ self.predictions = {}
288
+ for dataset in self.datasets:
289
+ logger.info(f"Evaluating responses for dataset: {dataset}...")
290
+ if dataset == "snowballing":
291
+ # Filter responses based on the dataset
292
+ responses = self.filter_responses(df, dataset)
293
+
294
+ # Evaluate the responses
295
+ result, labels, preds = self.evaluate_snowballing(responses)
296
+
297
+ # Store the output and save the results
298
+ df_out = pd.DataFrame({"gold_labels": labels, "predictions": preds})
299
+ df_out.to_json(f"{self.output_path}/{self.run_id}/{dataset}_output.jsonl", orient="records", lines=True)
300
+ self.combined_result[dataset] = result
301
+ self.labels[dataset] = labels
302
+ self.predictions[dataset] = preds
303
+
304
+ elif dataset == "selfaware":
305
+ # Filter responses based on the dataset
306
+ responses = self.filter_responses(df, dataset)
307
+
308
+ # Evaluate the responses
309
+ result, labels, preds = self.evaluate_selfaware(responses[:30])
310
+
311
+ # Store the output and save the results
312
+ df_out = pd.DataFrame({"gold_labels": labels, "predictions": preds})
313
+ df_out.to_json(f"{self.output_path}/{self.run_id}/{dataset}_output.jsonl", orient="records", lines=True)
314
+ self.combined_result[dataset] = result
315
+ self.labels[dataset] = labels
316
+ self.predictions[dataset] = preds
317
+
318
+ elif dataset == "freshqa":
319
+ # Filter responses based on the dataset
320
+ responses = self.filter_responses(df, dataset)
321
+
322
+ # Evaluate the responses
323
+ result, raw_evals, preds = self.evaluate_freshqa(responses[:30])
324
+
325
+ # Store the output and save the results
326
+ df_out = pd.DataFrame({"raw_evaluations": raw_evals, "predictions": preds})
327
+ df_out.to_json(f"{self.output_path}/{self.run_id}/{dataset}_output.jsonl", orient="records", lines=True)
328
+ self.combined_result[dataset] = result
329
+
330
+ elif dataset in ["factoolqa", "felm-wk", "factcheck-bench", "factscore-bio"]:
331
+ # Check if the freetext key exists
332
+ if self.combined_result.get("freetext") is None:
333
+ self.combined_result["freetext"] = {}
334
+
335
+ # Filter responses based on the dataset
336
+ responses = self.filter_responses(df, dataset)
337
+
338
+ # Evaluate the responses
339
+ results, evaluations = self.evaluate_freetext(responses[:30], self.model_name, self.run_id)
340
+
341
+ # Store the output and save the results
342
+ df_out = pd.DataFrame(evaluations)
343
+ df_out.to_json(f"{self.output_path}/{self.run_id}/{dataset}_output.jsonl", orient="records", lines=True)
344
+ self.combined_result["freetext"][dataset] = results
345
+
346
+ else:
347
+ logger.error(f"Dataset {dataset} is not supported.")
348
+ raise ValueError(f"Dataset {dataset} is not supported.")
349
+
350
+ logger.info(f"Finished evaluating responses for dataset: {dataset}")
351
+
352
+ # save all evaluation results
353
+ with open(f"{self.output_path}/{self.run_id}/result.json", "w") as json_file:
354
+ json.dump(self.combined_result, json_file, indent=4)
355
+
356
+ # Analyze the results
357
+ if analyze:
358
+ self.logger.info("Analyzing the results...")
359
+ self.generate_plots(save_plots=True, fig_path=f"{self.output_path}/{self.run_id}")
360
+
361
+ # Create a report
362
+ if save_report:
363
+ self.logger.info("Creating the report...")
364
+ self.generate_report(report_path=f"{self.output_path}/{self.run_id}")
365
+
366
+ return self.combined_result
367
+
368
+
369
+
370
+
371
+
372
+
src/openfactcheck/evaluator/llm/evaluate_freetext.py ADDED
@@ -0,0 +1,305 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+ import json
4
+ import math
5
+ import pandas as pd
6
+ import seaborn as sns
7
+ from hashlib import md5
8
+ import matplotlib.pyplot as plt
9
+
10
+ from openfactcheck.lib.logger import logger
11
+ from openfactcheck.core.base import OpenFactCheck
12
+
13
+ class FreeTextEvaluator():
14
+ def __init__(self, ofc: OpenFactCheck):
15
+ """
16
+ Initialize the FreeTextEvaluator object.
17
+ """
18
+
19
+ self.logger = logger
20
+
21
+ # Set the OpenFactCheck object
22
+ self.ofc = ofc
23
+
24
+ def calculate_price(self, num_claims, cost_openai=0.015, cost_serper=0.001):
25
+ """
26
+ Calculate the cost (in USD) of the API calls for the free-text experiment.
27
+ 2x API calls per claim
28
+
29
+ Parameters
30
+ ----------
31
+ numClaims : int
32
+ The number of claims in the free-text experiment.
33
+ costOpenAI : float
34
+ The cost of the OpenAI API call.
35
+ costSerper : float
36
+ The cost of the Serper API call.
37
+ """
38
+ return num_claims * 2 * (cost_openai + cost_serper)
39
+
40
+ def sum_all_elements(self, obj: dict):
41
+ """
42
+ Sum all elements of an object.
43
+ """
44
+ ret = 0
45
+ for k, v in obj.items():
46
+ ret += v
47
+ return ret
48
+
49
+ def assess_freetext(self, output_path: str):
50
+ """
51
+ Assess the free-text experiment, i.e., the number and type of claims, this is, Exact Matching (EM).
52
+ """
53
+
54
+ # Initialize the return object
55
+ claims = {
56
+ "num_false_claims": 0,
57
+ "num_mixed_claims": 0,
58
+ "num_true_claims": 0,
59
+ "num_undefined_claims": 0
60
+ }
61
+ path = output_path + '/evidence_stance.json'
62
+ if not os.path.exists(path):
63
+ return False
64
+ df = pd.read_json(path, lines=False)
65
+ dataobj = json.loads(df.to_json())
66
+
67
+ # Assess the claims
68
+ for k, v in dataobj.items():
69
+ # If stance contains definitive or mixed, then it is false
70
+ if "definitive" in v["stances"][0] or "mixed" in v["stances"][0]:
71
+ claims["num_mixed_claims"] += 1
72
+ elif "factual" in v["stances"][0] or "confirm" in v["stances"][0]:
73
+ claims["num_true_claims"] += 1
74
+ elif "error" in v["stances"][0] or "incorrect" in v["stances"][0] or "false" in v["stances"][0]:
75
+ claims["num_false_claims"] += 1
76
+ else:
77
+ claims["num_undefined_claims"] += 1
78
+
79
+ return claims
80
+
81
+ def read_evaluations(self):
82
+ """
83
+ Read the evaluations from the output directory.
84
+ """
85
+ data = []
86
+ for dirname in os.listdir(self.base_output_path):
87
+ dirpath = os.path.join(self.base_output_path, dirname)
88
+ if os.path.isdir(dirpath):
89
+ if os.path.exists(os.path.join(dirpath, 'evaluation.json')):
90
+ with open(os.path.join(dirpath, 'evaluation.json'), 'r') as f:
91
+ data.append(json.load(f))
92
+ return data
93
+
94
+ def read_results(self, evaluations):
95
+ """
96
+ Read the results from the evaluations.
97
+ """
98
+ # Calculate the total cost and time
99
+ (costs, time_costs, true_claims, false_claims, mixed_claims, undefined_claims, total_claims) = (0, 0, 0, 0, 0, 0, 0)
100
+ for evaluation in evaluations:
101
+ total_claims += 1
102
+
103
+ # Calculate the costs
104
+ costs += self.calculate_price(self.sum_all_elements(evaluation["claims"]))
105
+ time_costs += evaluation["end"] - evaluation["start"]
106
+
107
+ # Calculate the number of claims
108
+ false_claims += evaluation["claims"]["num_false_claims"]
109
+ mixed_claims += evaluation["claims"]["num_mixed_claims"]
110
+ undefined_claims += evaluation["claims"]["num_undefined_claims"]
111
+ if (evaluation["claims"]["num_false_claims"] + evaluation["claims"]["num_mixed_claims"]) == 0:
112
+ true_claims += 1
113
+
114
+ return{
115
+ "Claims": total_claims,
116
+ "True Claims": true_claims,
117
+ "False Claims": false_claims,
118
+ "Mixed Claims": mixed_claims,
119
+ "Undefined Claims": undefined_claims,
120
+ "Cost (USD)": costs,
121
+ "Time (ms)": time_costs,
122
+ "Percentage of True Responses": round(true_claims / total_claims if total_claims != 0 else 0, 3) * 100,
123
+ "Percentage of False Responses": round(false_claims / total_claims if total_claims != 0 else 0, 3) * 100
124
+ }
125
+
126
+ def freetext_barplot(self, results, fig_path: str = "", save: bool = False):
127
+ """
128
+ Create a barplot for the free-text evaluation results, ensuring full row utilization.
129
+
130
+ Parameters
131
+ ----------
132
+ results : dict
133
+ The dictionary of results from the free-text evaluation.
134
+ fig_path : str
135
+ The path to save the figure.
136
+ save : bool
137
+ Whether to save the figure or not.
138
+ """
139
+
140
+ # Exclude "Claims" and prepare data
141
+ metrics = list(next(iter(results.values())).keys())
142
+ datasets = list(results.keys())
143
+
144
+ # Prepare plot data and handle specific conversions
145
+ plot_data = {}
146
+ for metric in metrics:
147
+ if metric == "Claims":
148
+ continue
149
+ if metric == "Time (s)":
150
+ plot_data["Time (min)"] = [results[dataset][metric] / (1000 * 60) for dataset in datasets]
151
+ elif metric == "Percentage of True Responses":
152
+ plot_data[metric] = [results[dataset][metric] for dataset in datasets]
153
+ else:
154
+ plot_data[metric] = [results[dataset][metric] for dataset in datasets]
155
+
156
+ # Define the layout
157
+ total_metrics = len(plot_data)
158
+ ncols = 4 # Maximum number of columns per row
159
+ nrows = (total_metrics + ncols - 1) // ncols # Calculate the required number of rows
160
+
161
+ # Creating subplots
162
+ fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(20, 5 * nrows))
163
+ fig.suptitle('Performance on Free-Text Dataset')
164
+
165
+ # Flatten axes array if more than one row
166
+ axes = axes.flatten() if nrows > 1 else [axes]
167
+
168
+ # Generate each bar plot and deactivate unused axes
169
+ for ax, (metric, values) in zip(axes[:total_metrics], plot_data.items()):
170
+ bars = ax.bar(datasets, values, color=sns.color_palette("rocket", n_colors=len(datasets)))
171
+ ax.set_title(metric)
172
+ ax.set_xticks(range(len(datasets)))
173
+ ax.set_xticklabels(datasets, rotation=45, ha="right")
174
+ ax.set_ylabel(metric)
175
+
176
+ # Annotate each bar with its value
177
+ for bar in bars:
178
+ yval = bar.get_height()
179
+ ax.text(bar.get_x() + bar.get_width()/2, yval, round(yval, 2),
180
+ ha='center', va='bottom')
181
+
182
+ # Set y-axis limits to accommodate annotations
183
+ ax.set_ylim(0, max(values) * 1.1)
184
+
185
+ # Hide unused axes
186
+ for ax in axes[total_metrics:]:
187
+ ax.axis('off')
188
+
189
+ # Adjust layout to prevent overlap
190
+ plt.tight_layout()
191
+
192
+ if save:
193
+ plt.savefig(os.path.join(fig_path, "freetext_barplot.pdf"), format="pdf")
194
+ plt.savefig(os.path.join(fig_path, "freetext_barplot.png"), format="png")
195
+
196
+ # Return the figure
197
+ return fig
198
+
199
+
200
+ def evaluate_freetext(self, llm_responses: list, model_name: str, run_id: str):
201
+ """
202
+ Evaluate the LLM responses on free-text datasets.
203
+ Currently, FactoolQA, FELM-WK, FactCheck-Bench and FactScore-Bio datasets are included by default.
204
+
205
+ Parameters
206
+ ----------
207
+ llm_responses : list
208
+ The LLM responses on the free-text datasets.
209
+ """
210
+
211
+ # Set the pipeline for the FreeTextEvaluator
212
+ pipeline = [
213
+ "all_pass_abstain_detector",
214
+ "factool_decontextualizer",
215
+ "factool_evidence_retriever",
216
+ "factool_claim_examiner",
217
+ "factool_post_editor",
218
+ "concat_response_generator"
219
+ ]
220
+
221
+ # Initialize the pipeline manually
222
+ self.ofc.init_pipeline_manually(pipeline=pipeline)
223
+
224
+ # Get the dataset name and create DataFrame
225
+ dataset = llm_responses[0]['source']
226
+ llm_responses = pd.DataFrame(llm_responses)
227
+
228
+ # Save the base_output_path
229
+ self.base_output_path = f"{self.ofc.output_path}/llm_evaluator/{run_id}/{dataset}"
230
+
231
+ # Evaluate the LLM responses
232
+ for idx, response in llm_responses.iterrows():
233
+
234
+ prompt = response['prompt']
235
+ response = response['response']
236
+
237
+ # Set the output path
238
+ output_path = f"{self.base_output_path}/{idx}_{md5(prompt.encode()).hexdigest()}"
239
+ if not os.path.exists(output_path):
240
+ os.makedirs(output_path)
241
+
242
+ # If the file was already evaluated, skip it
243
+ if (os.path.exists(f"{self.base_output_path}/{idx}_{md5(prompt.encode()).hexdigest()}/evaluation.json")):
244
+ logger.info(f"Skipping the evaluation for prompt {idx} as it was already evaluated.")
245
+ continue
246
+
247
+ # TODO: This should work (but it doesn't)
248
+ # self.ofc.init_solver("factool_evidence_retriever", {"path_save_evidence": f"{output_path}/evidence.json"})
249
+
250
+ # Evaluate the response
251
+ start = time.time() * 1000
252
+ _result = self.ofc.ResponseEvaluator.evaluate(
253
+ response=response,
254
+ prompt=prompt,
255
+ sample_name=f"llm_evaluator/{run_id}/truth/{dataset}/{idx}"
256
+ )
257
+ end = time.time() * 1000
258
+
259
+ # TODO: This is a workaround for the TODO above (move the evidence.json file)
260
+ if os.path.exists("evidence.json"):
261
+ os.rename("evidence.json", f"{output_path}/evidence.json")
262
+ if os.path.exists("evidence_stance.json"):
263
+ os.rename("evidence_stance.json", f"{output_path}/evidence_stance.json")
264
+
265
+ # Assess the free-text experiment
266
+ claims = self.assess_freetext(output_path)
267
+ if not claims:
268
+ self.logger.warning(f'Error in assessing experiment for prompt {idx}')
269
+ continue
270
+
271
+ # Persist the output
272
+ result = {}
273
+ result["start"] = math.floor(start)
274
+ result["end"] = math.floor(end)
275
+ result["llm"] = model_name
276
+ result["dataset"] = llm_responses["source"][idx]
277
+ result["prompt"] = prompt
278
+ result["claims"] = claims
279
+ result["result"] = _result
280
+
281
+ # Save the result
282
+ logger.debug(f"Saving the result for prompt {idx} in {output_path}/evaluation.json")
283
+ with open(f"{output_path}/evaluation.json", "w") as f:
284
+ json.dump(result, f, indent=4)
285
+
286
+ logger.info(f"Evaluated the LLM response for prompt {idx} in {end - start} ms.")
287
+
288
+ logger.info(f"Finished evaluating the LLM responses for the {dataset} dataset.")
289
+
290
+ # Read the outputs
291
+ evaluations = self.read_evaluations()
292
+
293
+ # Read the results
294
+ results = self.read_results(evaluations)
295
+
296
+ return results, evaluations
297
+
298
+
299
+
300
+
301
+
302
+
303
+
304
+
305
+
src/openfactcheck/evaluator/llm/evaluate_freshqa.py ADDED
@@ -0,0 +1,308 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import pytz
4
+ import datetime
5
+ import pandas as pd
6
+ import seaborn as sns
7
+ from openai import OpenAI
8
+ import matplotlib.pyplot as plt
9
+
10
+ class FreshQAEvaluator():
11
+ def __init__(self):
12
+ self.openai_client = OpenAI()
13
+ self.openai_model_name = "gpt-4o-mini"
14
+ self.current_date = datetime.datetime.now(pytz.timezone("America/Los_Angeles")).strftime("%B %d, %Y")
15
+ self.prefix = (
16
+ "Please evaluate the response to a question under strict evaluation, where"
17
+ " no hallucinations, outdated information, or ill-formed answers are"
18
+ " allowed. Please credit the response only if it provides a confident and"
19
+ " definitive answer, or the correct answer can be obviously inferred from"
20
+ " the response. The primary or final answer when standing alone must be"
21
+ " accurate. Any additional information that is provided must not contradict"
22
+ " the primary answer or reshape one's perception of it. For false-premise"
23
+ " questions, the response must point out the presence of a false premise to"
24
+ " receive credit. For answers that involve names of entities (e.g.,"
25
+ " people), complete names or commonly recognized names are expected."
26
+ " Regarding numerical answers, approximate numbers are generally not"
27
+ " accepted unless explicitly included in the ground-truth answers. A"
28
+ " response that contains any hallucination, no matter how minor, will not"
29
+ " receive credit. Furthermore, when the response indicates that the"
30
+ " information might be outdated, we accept it only if it is evident that"
31
+ " the knowledge has not changed (e.g., through common sense or well-known"
32
+ " facts)."
33
+ )
34
+
35
+ self.demo_examples = [
36
+ {
37
+ "question": "How old is the world's oldest verified living person?",
38
+ "correct_answers": [
39
+ "116 years old",
40
+ "116",
41
+ ],
42
+ "response": (
43
+ f"As of today {self.current_date}, the most up-to-date and relevant"
44
+ " information regarding this query is as follows. The oldest"
45
+ " verified living person is Maria Branyas Morera, who was born"
46
+ " on March 4, 1907, making her 116 years old."
47
+ ),
48
+ "comment": (
49
+ "This is a valid question. The primary answer in the response"
50
+ " (116 years old) is accurate, and all the provided information"
51
+ " is accurate and up-to-date. Thus, the response is credited."
52
+ ),
53
+ "evaluation": "correct",
54
+ },
55
+ {
56
+ "question": "When did the UK adopt the Euro?",
57
+ "correct_answers": ["The United Kingdom has never adopted the Euro."],
58
+ "response": (
59
+ "The UK has never adopted the Euro as its official currency. The"
60
+ " country has retained the British pound sterling (GBP) as its"
61
+ " currency."
62
+ ),
63
+ "comment": (
64
+ "The question contains a false premise. The response debunks the"
65
+ " question's false premise (i.e., it points out that the UK has"
66
+ " never adopted the Euro), and all the provided information is"
67
+ " accurate and up-to-date. Thus, the response is credited."
68
+ ),
69
+ "evaluation": "correct",
70
+ },
71
+ {
72
+ "question": (
73
+ "How much longer will Brittney Griner spend in the Russian prison?"
74
+ ),
75
+ "correct_answers": [
76
+ "She was released in December 2022 as part of a prisoner swap."
77
+ ],
78
+ "response": (
79
+ "I'm sorry, but I have no information to suggest that Brittney"
80
+ " Griner is currently in a Russian prison. As far as I know, she"
81
+ " is a professional basketball player who currently plays for the"
82
+ " Phoenix Mercury in the Women's National Basketball Association"
83
+ " (WNBA). If you have any more information or context, please let"
84
+ " me know and I'll do my best to help."
85
+ ),
86
+ "comment": (
87
+ "The question contains a false premise. The response fails to"
88
+ " debunk the question's false premise by not explicitly stating"
89
+ " that Brittney Griner was already released. Additionally, the"
90
+ " response lacks a confident and definitive answer. Thus, the"
91
+ " response is not credited."
92
+ ),
93
+ "evaluation": "incorrect",
94
+ },
95
+ {
96
+ "question": (
97
+ "Which language has the third largest population by number of"
98
+ " native speakers?"
99
+ ),
100
+ "correct_answers": ["English"],
101
+ "response": "1. Mandarin 2. Spanish 3. English",
102
+ "comment": (
103
+ "This is a valid question. While the correct answer (English) can"
104
+ " be inferred from the response, the response lacks an explicit"
105
+ " statement, which is not desirable."
106
+ " Thus, the response is not credited."
107
+ ),
108
+ "evaluation": "incorrect",
109
+ },
110
+ {
111
+ "question": (
112
+ "Has Virginia Woolf's novel about the Ramsay family entered the"
113
+ " public domain in the United States?"
114
+ ),
115
+ "correct_answers": ["Yes"],
116
+ "response": (
117
+ "1927's To the Lighthouse is in the public domain in the United"
118
+ " States. The final answer is To the Lighthouse."
119
+ ),
120
+ "comment": (
121
+ "This is a valid question. While the primary information in the"
122
+ " response (1927's To the Lighthouse is in the public domain in"
123
+ " the United States) is accurate, the final answer when standing"
124
+ ' alone is inaccurate (it should be "Yes" instead of "To the'
125
+ ' Lighthouse"). Thus, the response is not credited.'
126
+ ),
127
+ "evaluation": "incorrect",
128
+ },
129
+ ]
130
+
131
+ self.demo_questions = [ex["question"] for ex in self.demo_examples]
132
+ self.demo_evaluations = []
133
+
134
+ self.demo_evaluation_template = (
135
+ "\ncorrect answer(s): {correct_answers}"
136
+ "\nresponse: {response}"
137
+ "\ncomment: {comment}"
138
+ "\nevaluation: {evaluation}"
139
+ )
140
+
141
+ self.evaluation_template = (
142
+ "\ncorrect answer(s): {correct_answers}" "\nresponse: {response}" "\ncomment: "
143
+ )
144
+
145
+ self.df = pd.DataFrame()
146
+
147
+ def call_openai_api(self, prompt, temperature, max_tokens, chat_completions=True):
148
+ """
149
+ Call the OpenAI API to generate responses.
150
+ """
151
+
152
+ # Generate prompts for demo examples
153
+ for ex in self.demo_examples:
154
+ demo_evaluation = self.demo_evaluation_template.format(
155
+ question=ex["question"],
156
+ correct_answers=" | ".join(ex["correct_answers"]),
157
+ response=ex["response"],
158
+ comment=ex["comment"],
159
+ evaluation=ex["evaluation"],
160
+ )
161
+ self.demo_evaluations.append(demo_evaluation)
162
+
163
+ # Call the OpenAI API to generate responses
164
+ # If chat completions are enabled, use the chat completions endpoint
165
+ if chat_completions:
166
+ response = self.openai_client.chat.completions.create(
167
+ model=self.openai_model_name,
168
+ temperature=temperature,
169
+ max_tokens=max_tokens,
170
+ messages=[
171
+ {
172
+ "role": "system",
173
+ "content": (
174
+ "You are a helpful assistant. Respond as concisely as"
175
+ f" possible. Knowledge cutoff: {self.current_date}."
176
+ ),
177
+ },
178
+ {"role": "user", "content": "What's today's date?"},
179
+ {
180
+ "role": "assistant",
181
+ "content": f"Today is {self.current_date} in Pacific Standard Time.",
182
+ },
183
+ {"role": "user", "content": prompt},
184
+ ],
185
+ )
186
+ return response.choices[0].message.content
187
+
188
+ # If chat completions are disabled, use the completions endpoint
189
+ else:
190
+ response = self.openai_client.completions.create(
191
+ model=self.openai_model_name,
192
+ temperature=temperature,
193
+ max_tokens=max_tokens,
194
+ prompt=prompt,
195
+ )
196
+ return response.choices[0].text
197
+
198
+
199
+ def call_fresheval(self, prefix, question, response, correct_answers, evaluation):
200
+ """
201
+ Call the FreshEval API to evaluate responses.
202
+ """
203
+
204
+ # Set the parameters for the OpenAI API
205
+ temperature = 0.0
206
+ max_tokens = 256
207
+ chat_completions = True
208
+
209
+ # Generate prompts for demo examples
210
+ demo_prompts = []
211
+ for q, e in zip(self.demo_questions, self.demo_evaluations):
212
+ demo_prompts.append(f"\n\n\nquestion: {q}{e}")
213
+
214
+ # Generate the fresh evaluation prompt
215
+ fresheval_demo = "".join(demo_prompts).strip()
216
+ fresheval_question = f"\n\n\nquestion: {question}{evaluation}"
217
+
218
+ # Call the OpenAI API to generate responses
219
+ fresh_eval = prefix + "\n\n\n" + fresheval_demo + fresheval_question
220
+ answer = self.call_openai_api(fresh_eval, temperature, max_tokens, chat_completions)
221
+
222
+ return answer
223
+
224
+ def extract_ratings(self, response):
225
+ """
226
+ Extract the rating from the evaluation response.
227
+ """
228
+
229
+ # If the eval answer contains either of these three words, considered as 0
230
+ # including incorrect, not correct, not credited
231
+ pattern = re.compile(
232
+ r"\b(?:incorrect|not\s+correct|not\s+credited)\b", re.IGNORECASE
233
+ )
234
+ if pattern.search(response):
235
+ return 0
236
+ else:
237
+ return 1
238
+
239
+ def freshqa_piechart(self, result, fig_path: str = "", save: bool = False):
240
+ """
241
+ Plot a pie chart of the true and false answers on FreshQA.
242
+
243
+ Parameters
244
+ ----------
245
+ result : dict
246
+ The evaluation result.
247
+ fig_path : str
248
+ The path to save the figure.
249
+ save : bool, optional
250
+ Whether to save the figure, by default True.
251
+ """
252
+
253
+ # Given numbers
254
+ sizes = [result["accuracy"], 1 - result["accuracy"]]
255
+ labels = ["True Answer", "False Answer"]
256
+ colors = [(0, 1, 0, 0.5), (1, 0, 0, 0.5)] # Red and green with 50% transparency
257
+
258
+ # Create a new figure
259
+ fig, ax = plt.subplots()
260
+
261
+ # Plot pie chart
262
+ plt.pie(sizes, labels=labels, colors=colors, autopct="%1.1f%%", startangle=140)
263
+ plt.title("Performance on FreshQA Dataset")
264
+
265
+ # Equal aspect ratio ensures that pie is drawn as a circle
266
+ plt.axis("equal")
267
+
268
+ if save:
269
+ # Save the figure
270
+ plt.tight_layout()
271
+ plt.savefig(os.path.join(fig_path, "freshqa_piechart.pdf"), format="pdf")
272
+ plt.savefig(os.path.join(fig_path, "freshqa_piechart.png"), format="png")
273
+
274
+ # Return the figure
275
+ return fig
276
+
277
+
278
+ def evaluate_freshqa(self, llm_responses):
279
+ """
280
+ Evaluate the responses generated by the LLM on FreshQA questions.
281
+ """
282
+
283
+ llm_responses = pd.DataFrame(llm_responses)
284
+ raw_evals = []
285
+ preds = []
286
+ for idx, row in llm_responses.iterrows():
287
+ evaluation = self.evaluation_template.format(
288
+ correct_answers=row["reference_answer"],
289
+ response=row["response"],
290
+ )
291
+
292
+ fresheval = self.call_fresheval(
293
+ self.prefix,
294
+ row["question"],
295
+ row["response"],
296
+ row["reference_answer"],
297
+ evaluation,
298
+ )
299
+
300
+ evaluation_rating = self.extract_ratings(fresheval)
301
+ raw_evals.append(evaluation)
302
+ preds.append(evaluation_rating)
303
+
304
+ # Compute the accuracy (percentage of correct evaluations)
305
+ accuracy = sum(preds) / len(preds)
306
+ result = { "accuracy": accuracy }
307
+ return result, raw_evals, preds
308
+
src/openfactcheck/evaluator/llm/evaluate_selfaware.py ADDED
@@ -0,0 +1,284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import torch
4
+ import string
5
+ import numpy as np
6
+ import seaborn as sns
7
+ import matplotlib.pyplot as plt
8
+ from transformers import AutoTokenizer, AutoModel
9
+ from sklearn.metrics.pairwise import cosine_similarity
10
+ from sklearn.metrics import classification_report, confusion_matrix
11
+
12
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
13
+
14
+ class SelfAwareEvaluator():
15
+ def __init__(self):
16
+ pass
17
+
18
+ def remove_punctuation(self, input_string):
19
+ """
20
+ Remove the punctuation from the input string.
21
+ """
22
+ input_string = input_string.strip().lower()
23
+ if input_string and input_string[-1] in string.punctuation:
24
+ return input_string[:-1]
25
+ return input_string
26
+
27
+
28
+ def cut_sentences(self, content):
29
+ """
30
+ Cut the content into sentences.
31
+ """
32
+ sentences = re.split(r"(\.|\!|\?|。|!|?|\.{6})", content)
33
+ return sentences
34
+
35
+
36
+ def cut_sub_string(self, input_string, window_size=5, punctuation=".,?!"):
37
+ """
38
+ Cut the input string into sub-strings of a fixed window size.
39
+ """
40
+ input_string = input_string.strip().lower()
41
+
42
+ # If the input string is empty, return an empty list
43
+ if len(input_string) < 2:
44
+ return [""]
45
+
46
+ # Remove the punctuation
47
+ if input_string[-1] in punctuation:
48
+ input_string = input_string[:-1]
49
+
50
+ # Split the string into words
51
+ string_list = input_string.split()
52
+
53
+ # If the length of the string is less than the window size, return the string
54
+ length = len(string_list)
55
+ if length <= window_size:
56
+ return [input_string]
57
+ else:
58
+ res = []
59
+ for i in range(length - window_size + 1):
60
+ sub_string = " ".join(string_list[i: i + window_size])
61
+ if sub_string != "" or sub_string != " ":
62
+ res.append(sub_string)
63
+ return res
64
+
65
+
66
+ def group_cosine_similarity(self, model, tokenizer, sentences1, sentences2):
67
+ """
68
+ Calculate the cosine similarity between two groups of sentences.
69
+ """
70
+ # Move the model to the device
71
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
72
+ model.to(device)
73
+
74
+ # Encode the sentences
75
+ encoded1 = tokenizer(sentences1, padding=True, truncation=True, return_tensors="pt").to(device)
76
+ encoded2 = tokenizer(sentences2, padding=True, truncation=True, return_tensors="pt").to(device)
77
+
78
+ # Get the embeddings
79
+ embeddings1 = model(**encoded1).pooler_output
80
+ embeddings2 = model(**encoded2).pooler_output
81
+
82
+ # Calculate the cosine similarity
83
+ similarities = cosine_similarity(embeddings1.detach().cpu().numpy(), embeddings2.detach().cpu().numpy())
84
+
85
+ return similarities
86
+
87
+
88
+ def get_unanswerable(self, response, model, tokenizer, threshold=0.75):
89
+ """
90
+ Predict whether the response is unanswerable or not.
91
+ """
92
+ # List of uncertain words
93
+ uncertain_list = [
94
+ "The answer is unknown.",
95
+ "The answer is uncertain.",
96
+ "The answer is unclear.",
97
+ "There is no scientific evidence.",
98
+ "There is no definitive answer.",
99
+ "There is no right answer.",
100
+ "There is much debate.",
101
+ "There is no known case.",
102
+ "There is no concrete answer to this question.",
103
+ "There is no public information available.",
104
+ "It is impossible to know.",
105
+ "It is impossible to answer.",
106
+ "It is difficult to predict.",
107
+ "It is not known.",
108
+ "We do not know.",
109
+ "I'm not sure.",
110
+ ]
111
+ uncertain_list = [self.remove_punctuation(_) for _ in uncertain_list]
112
+
113
+ # Check if the response contains uncertain words
114
+ pred_unanswerable = False
115
+ response = response.lower()
116
+ for uncertain in uncertain_list:
117
+ if uncertain in response:
118
+ pred_unanswerable = True
119
+
120
+ # If the response does not contain uncertain words, check the cosine similarity
121
+ if pred_unanswerable == False:
122
+ # Cut the response into sentences
123
+ sub_sen_list = self.cut_sentences(response)
124
+
125
+ # Cut the sentences into sub-strings
126
+ sub_str_list = []
127
+ for sub_sen in sub_sen_list:
128
+ if len(sub_sen) >= 2:
129
+ sub_str_list.extend(self.cut_sub_string(sub_sen))
130
+
131
+ # Calculate the cosine similarity
132
+ if len(sub_str_list) != 0:
133
+ similarities = self.group_cosine_similarity(model, tokenizer, sub_str_list, uncertain_list)
134
+ else:
135
+ similarities = [0]
136
+
137
+ # Check if the maximum similarity is greater than the threshold
138
+ max_uncertainty = np.max(similarities)
139
+
140
+ # If the maximum similarity is greater than the threshold, predict unanswerable
141
+ if max_uncertainty > threshold:
142
+ pred_unanswerable = True
143
+
144
+ return pred_unanswerable
145
+
146
+ def selfaware_barplot(self, result: dict, fig_path: str = "", save: bool = False):
147
+ """
148
+ Create a bar plot of the performance on the SelfAware dataset.
149
+
150
+ Parameters
151
+ ----------
152
+ result : dict
153
+ The evaluation results for the LLM responses on the SelfAware dataset.
154
+ fig_path : str
155
+ The path to save the figure.
156
+ save : bool, optional
157
+ Whether to save the figure, by default True.
158
+ """
159
+
160
+ # Data
161
+ unanswerable_as_pos = result["unanswerable_as_pos"]
162
+ answerable_as_pos = result["answerable_as_pos"]
163
+
164
+ # Remove support
165
+ unanswerable_as_pos.pop("support", None)
166
+ answerable_as_pos.pop("support", None)
167
+
168
+ # Extract the accuracy values for each topic
169
+ metrics = list(unanswerable_as_pos.keys())
170
+ unanswerable_values = [round(v, 2) for k, v in unanswerable_as_pos.items()]
171
+ answerable_values = [round(v, 2) for k, v in answerable_as_pos.items()]
172
+
173
+ # Create a new figure
174
+ fig, ax = plt.subplots()
175
+
176
+ # Number of groups
177
+ n_groups = len(metrics)
178
+ index = np.arange(n_groups)
179
+ bar_width = 0.35
180
+
181
+ # Select two colors from the "rocket" palette
182
+ colors = sns.color_palette("rocket", n_colors=10)
183
+ color_unanswerable = colors[1]
184
+ color_answerable = colors[7]
185
+
186
+ # Plotting both sets of data
187
+ bars1 = ax.bar(index, unanswerable_values, bar_width, label='Unanswerable as Positive', color=color_unanswerable)
188
+ bars2 = ax.bar(index + bar_width, answerable_values, bar_width, label='Answerable as Positive', color=color_answerable)
189
+
190
+ # Adding values on top of each bar
191
+ for bar in bars1:
192
+ ax.text(bar.get_x() + bar.get_width() / 2, bar.get_height(), f'{bar.get_height():.2f}',
193
+ ha='center', va='bottom', color='black', rotation='horizontal')
194
+ for bar in bars2:
195
+ ax.text(bar.get_x() + bar.get_width() / 2, bar.get_height(), f'{bar.get_height():.2f}',
196
+ ha='center', va='bottom', color='black', rotation='horizontal')
197
+
198
+ # Set x-axis labels
199
+ ax.set_xticks(index + bar_width / 2)
200
+ ax.set_xticklabels(metrics)
201
+
202
+ # Set y-axis limits to accommodate annotations
203
+ ax.set_ylim((0, max(unanswerable_values + answerable_values) + 0.1))
204
+
205
+ # Adding labels and title
206
+ ax.set_xlabel("Metrics")
207
+ ax.set_ylabel("Performance")
208
+ ax.set_title("Performance on SelfAware Dataset")
209
+ ax.legend()
210
+
211
+ if save:
212
+ # Save the figure
213
+ plt.tight_layout()
214
+ plt.savefig(os.path.join(fig_path, "selfaware_barplot.pdf"), format="pdf")
215
+ plt.savefig(os.path.join(fig_path, "selfaware_barplot.png"), format="png")
216
+
217
+ # Return the figure
218
+ return fig
219
+
220
+ def selfaware_cm(self, labels: list, preds: list, fig_path: str = "", save: bool = False):
221
+ """
222
+ Create a confusion matrix for the SelfAware dataset.
223
+
224
+ Parameters
225
+ ----------
226
+ labels : list
227
+ The true labels.
228
+ preds : list
229
+ The predicted labels.
230
+ fig_path : str
231
+ The path to save the figure.
232
+ save : bool, optional
233
+ Whether to save the figure, by default True.
234
+ """
235
+
236
+ # Create a new figure
237
+ fig, ax = plt.subplots()
238
+
239
+ # Compute confusion matrix
240
+ cm = sns.heatmap(confusion_matrix(labels, preds), annot=True, fmt="d", cmap="Blues", ax=ax)
241
+
242
+ # Adding labels and title
243
+ plt.xticks(ticks=[0.5, 1.5], labels=["Answerable", "Unanswerable"])
244
+ plt.yticks(ticks=[0.5, 1.5], labels=["Answerable", "Unanswerable"])
245
+ plt.ylabel("True label")
246
+ plt.xlabel("Predicted label")
247
+ plt.title("Confusion Matrix on SelfAware dataset.")
248
+
249
+ if save:
250
+ # Save the figure
251
+ plt.tight_layout()
252
+ plt.savefig(os.path.join(fig_path, "selfaware_cm.pdf"), format="pdf")
253
+ plt.savefig(os.path.join(fig_path, "selfaware_cm.png"), format="png")
254
+
255
+ # Return the figure
256
+ return fig
257
+
258
+ def evaluate_selfaware(self, llm_responses):
259
+ # Load the model
260
+ model_name = "princeton-nlp/sup-simcse-roberta-large"
261
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
262
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
263
+ model = AutoModel.from_pretrained(model_name).to(device)
264
+
265
+ # Evaluate the LLM responses
266
+ labels, preds = [], []
267
+ for item in llm_responses:
268
+ # gold label: whether the question is answerable or not.
269
+ labels.append(item["label_unanswerable"])
270
+ # identify whether the model response answered the question or not.
271
+ preds.append(self.get_unanswerable(item["response"], model, tokenizer))
272
+
273
+ # Change the key names
274
+ result = classification_report(labels, preds, output_dict=True, zero_division=0)
275
+
276
+ # Renaming keys based on the expected output dictionary structure
277
+ # Unanswerable as positive class and answerable as negative class
278
+ if "True" in result:
279
+ result['unanswerable_as_pos'] = result.pop("True")
280
+ if "False" in result:
281
+ result['answerable_as_pos'] = result.pop('False')
282
+
283
+ return result, labels, preds
284
+
src/openfactcheck/evaluator/llm/evaluate_snowballing.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import numpy as np
4
+ import seaborn as sns
5
+ import matplotlib.pyplot as plt
6
+ from sklearn.metrics import classification_report, confusion_matrix
7
+
8
+ class SnowballingEvaluator():
9
+ """
10
+ Evaluate the LLM responses on the Snowballing dataset.
11
+
12
+ Parameters
13
+ ----------
14
+ LLMEvaluator : class
15
+ The LLMEvaluator class.
16
+
17
+ Methods
18
+ -------
19
+ evaluate_snowballing(llm_responses: list):
20
+ Evaluate the LLM responses on the Snowballing dataset
21
+ snowballing_barplot(result: dict, fig_path: str, save: bool = False):
22
+ Create a bar plot of the accuracy of the LLM responses on the Snowballing dataset
23
+ for each topic and the overall accuracy.
24
+ get_boolean(response: str, strict=False):
25
+ Get a boolean value from the response.
26
+ """
27
+ def __init__(self):
28
+ pass
29
+
30
+ def get_boolean(self, response: str, strict=False):
31
+ """
32
+ Get a boolean value from the response.
33
+
34
+ """
35
+ low_response = response.lower()
36
+ if strict:
37
+ if low_response.startswith("yes"):
38
+ return True
39
+ elif low_response.startswith("no"):
40
+ return False
41
+ return None
42
+ else:
43
+ # Check if the response contains any of the specified words
44
+ pattern = r"{}".format("|".join(["n't", "no"]))
45
+ if bool(re.search(pattern, response, re.IGNORECASE)):
46
+ return False
47
+ else:
48
+ return True
49
+
50
+ def snowballing_barplot(self, result: dict, fig_path: str = "", save: bool = False):
51
+ """
52
+ Create a bar plot of the accuracy of the LLM responses on the Snowballing dataset
53
+ for each topic and the overall accuracy.
54
+
55
+ Parameters
56
+ ----------
57
+ cresult : dict
58
+ The evaluation results for the LLM responses on the Snowballing dataset
59
+ fig_path : str
60
+ The path to save the figure.
61
+ save : bool, optional
62
+ Whether to save the figure, by default True.
63
+ """
64
+
65
+ # Data
66
+ items = result.keys()
67
+
68
+ # Extract the accuracy values for each topic
69
+ values = [round(v["accuracy"], 2) for k, v in result.items()]
70
+
71
+ # Create a new figure
72
+ fig, ax = plt.subplots()
73
+
74
+ # Plotting
75
+ bars = sns.barplot(x=items, y=values, palette="rocket", hue=items, ax=ax)
76
+
77
+ # Adding values on top of each bar
78
+ for bar in bars.patches:
79
+ ax.text(bar.get_x() + bar.get_width() / 2, bar.get_height(),
80
+ f'{bar.get_height():.2f}',
81
+ ha='center',
82
+ va='bottom',
83
+ color='black',
84
+ rotation='horizontal')
85
+
86
+ # Rotating x-axis tick labels
87
+ plt.xticks(rotation=20)
88
+
89
+ # Set y-axis limits to accommodate annotations
90
+ plt.ylim((0, max(values) + 0.1))
91
+
92
+ # Adding labels and title
93
+ plt.xlabel("Topics")
94
+ plt.ylabel("Accuracy")
95
+ plt.title("Performance on Snowballing Dataset.")
96
+
97
+ if save:
98
+ # Save the figure
99
+ plt.tight_layout()
100
+ plt.savefig(os.path.join(fig_path, "snowballing_barplot.pdf"), format="pdf")
101
+ plt.savefig(os.path.join(fig_path, "snowballing_barplot.png"), format="png")
102
+
103
+ # Return the figure
104
+ return fig
105
+
106
+ def snowballing_cm(self, labels: list, preds: list, fig_path: str = "", save: bool = False):
107
+ """
108
+ Create a confusion matrix for the Snowballing dataset.
109
+
110
+ Parameters
111
+ ----------
112
+ labels : list
113
+ The true labels.
114
+ preds : list
115
+ The predicted labels.
116
+ fig_path : str
117
+ The path to save the figure.
118
+ save : bool, optional
119
+ Whether to save the figure, by default True.
120
+ """
121
+
122
+ # Create a new figure
123
+ fig, ax = plt.subplots()
124
+
125
+ # Plotting
126
+ cm = sns.heatmap(confusion_matrix(labels, preds), annot=True, fmt="d", cmap="Blues", ax=ax)
127
+
128
+ # Adding labels and title
129
+ plt.xticks(ticks=[0.5, 1.5], labels=["True", "False"])
130
+ plt.yticks(ticks=[0.5, 1.5], labels=["True", "False"])
131
+ plt.ylabel("True label")
132
+ plt.xlabel("Predicted label")
133
+ plt.title("Confusion Matrix on Snowballing dataset.")
134
+
135
+ if save:
136
+ # Save the figure
137
+ plt.tight_layout()
138
+ plt.savefig(os.path.join(fig_path, "snowballing_cm.pdf"), format="pdf")
139
+ plt.savefig(os.path.join(fig_path, "snowballing_cm.png"), format="png")
140
+
141
+ # Return the figure
142
+ return fig
143
+
144
+ def evaluate_snowballing(self, llm_responses: list):
145
+ """
146
+ Evaluate the LLM responses on the Snowballing dataset.
147
+ """
148
+
149
+ # Store evaluation results for three specific topics and aggregate results
150
+ # for the entire dataset, indexed by topic names.
151
+ results = {}
152
+
153
+ # Define the ground truth answers for the three specific topics.
154
+ topic_answers = {
155
+ "Primality Testing": True,
156
+ "US Senator Search": True,
157
+ "Graph Connectivity-Flight Search": False,
158
+ }
159
+
160
+ # Store the responses for each topic.
161
+ topic_responses = {}
162
+ for key in topic_answers:
163
+ topic_responses[key] = []
164
+
165
+ # Store the responses for each topic.
166
+ for item in llm_responses:
167
+ topic_responses[item["topic"]].append(self.get_boolean(item["response"]))
168
+
169
+ # Evaluate the LLM responses
170
+ labels, preds = [], []
171
+ for key in topic_answers:
172
+ # Evaluate the responses for each topic.
173
+ y_true = [topic_answers[key]] * len(topic_responses[key])
174
+ y_pred = topic_responses[key]
175
+ results[key] = classification_report(y_true, y_pred, output_dict=True, zero_division=0)
176
+
177
+ # Aggregate the results for the entire dataset.
178
+ labels += [topic_answers[key]] * len(topic_responses[key])
179
+ preds += topic_responses[key]
180
+
181
+ # Evaluate the responses for the entire dataset.
182
+ results["All"] = classification_report(labels, preds, output_dict=True, zero_division=0)
183
+
184
+ return results, labels, preds
src/openfactcheck/evaluator/llm/report.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import subprocess
3
+ from pathlib import Path
4
+ from jinja2 import Environment, FileSystemLoader
5
+
6
+ from importlib import resources as pkg_resources
7
+
8
+ from openfactcheck.lib.logger import logger
9
+ from openfactcheck.templates import report as report_dir
10
+
11
+ # Import latex template
12
+ report_template_path = str(pkg_resources.files(report_dir) / "llm_evaluation_report.tex")
13
+
14
+ def create_latex_report(model_name, report_path):
15
+ """
16
+ Fill data in tex templates.
17
+ """
18
+
19
+ loader = FileSystemLoader(os.path.dirname(report_template_path))
20
+ env = Environment(loader=loader)
21
+ data = {
22
+ "model_name": model_name.replace("_", " "),
23
+ "snowballing_barplot": "snowballing_barplot.png",
24
+ "snowballing_cm": "snowballing_cm.png",
25
+ "selfaware_barplot": "selfaware_barplot.png",
26
+ "selfaware_cm": "selfaware_cm.png",
27
+ "freshqa_barplot": "freshqa_barplot.png",
28
+ "freetext_barplot": "freetext_barplot.png",
29
+ }
30
+ template = env.get_template(os.path.basename(report_template_path))
31
+ latex = template.render(data)
32
+ with open(Path(report_path) / ("main.tex"), "w", encoding="utf-8") as f:
33
+ f.write(latex)
34
+
35
+ return None
36
+
37
+
38
+ def compile_pdf(report_path):
39
+ """
40
+ Compile the latex file to pdf.
41
+ """
42
+
43
+ # Change the directory to the report path
44
+ original_directory = os.getcwd()
45
+ os.chdir(report_path)
46
+
47
+ try:
48
+ try:
49
+ # Compile the latex file
50
+ subprocess.run(["pdflatex", "main.tex"], timeout=60)
51
+ except subprocess.TimeoutExpired:
52
+ logger.error("Compilation of the report timed out.")
53
+ raise Exception("Compilation of the report timed out.")
54
+
55
+
56
+ # Rename the pdf file
57
+ Path("main.pdf").replace("report.pdf")
58
+
59
+ # Remove the auxiliary files
60
+ for file in Path(".").glob("main*"):
61
+ file.unlink()
62
+
63
+ # Change the directory back to the original
64
+ os.chdir(original_directory)
65
+
66
+ except Exception as e:
67
+ logger.error(f"Error compiling the report: {e}")
68
+ raise Exception(f"Error compiling the report: {e}")
69
+
70
+
71
+ def create_report(model_name, report_path):
72
+ """
73
+ Create a pdf report.
74
+ """
75
+
76
+ logger.debug("Creating the report...")
77
+ create_latex_report(model_name, report_path)
78
+
79
+ logger.debug("Compiling the report...")
80
+ compile_pdf(report_path)
81
+
82
+ return Path(report_path) / "report.pdf"
src/openfactcheck/evaluator/response/__init__.py ADDED
File without changes
src/openfactcheck/evaluator/response/evaluate.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import uuid
3
+ import tqdm
4
+ import json
5
+ import traceback
6
+ from typing import Callable
7
+
8
+ from openfactcheck.lib.logger import logger
9
+ from openfactcheck.core.base import OpenFactCheck
10
+ from openfactcheck.core.state import FactCheckerState
11
+
12
+ class ResponseEvaluator:
13
+ def __init__(self, ofc: OpenFactCheck):
14
+ """
15
+ Initialize the ResponseEvaluator object.
16
+ """
17
+
18
+ # Set the OpenFactCheck object
19
+ self.ofc = ofc
20
+
21
+ def persist_output(self, state: FactCheckerState, idx, solver_name, cont, sample_name=0):
22
+ """
23
+ Persist the output of the solver
24
+ """
25
+ result = {
26
+ "idx": idx,
27
+ "solver": solver_name,
28
+ "continue": cont,
29
+ "state": state.to_dict()
30
+ }
31
+
32
+ # Create the output path
33
+ output_path = os.path.join(self.ofc.output_path, os.path.dirname(sample_name))
34
+ if not os.path.exists(output_path):
35
+ os.makedirs(output_path)
36
+
37
+ # Write the output to a file
38
+ with open(os.path.join(self.ofc.output_path, f'{sample_name}.jsonl'), 'a', encoding="utf-8") as f:
39
+ f.write(json.dumps(result, ensure_ascii=False) + '\n')
40
+
41
+ def read_output(self, sample_name):
42
+ """
43
+ Read the output file for the given sample
44
+ """
45
+ with open(os.path.join(self.ofc.output_path, f'{sample_name}.jsonl'), 'r', encoding="utf-8") as f:
46
+ return [json.loads(line) for line in f]
47
+
48
+ def remove_output(self, sample_name):
49
+ """
50
+ Remove the output file for the given sample
51
+ """
52
+ os.remove(os.path.join(self.ofc.output_path, f'{sample_name}.jsonl'))
53
+
54
+ def evaluate(self, response: str, question: str = None, callback: Callable = None, **kwargs):
55
+ """
56
+ Evaluate the response using the pipeline and return the output
57
+ """
58
+
59
+ # Check if sample_name is provided in kwargs else generate a random one
60
+ sample_name = kwargs.get("sample_name", str(uuid.uuid4().hex[:6]))
61
+
62
+ # Initialize the state
63
+ solver_output = FactCheckerState(question=question, response=response)
64
+
65
+ # Initialize the output name
66
+ output_name = "response"
67
+ for idx, (name, (solver, input_name, output_name)) in tqdm.tqdm(enumerate(self.ofc.pipeline.items()),
68
+ total=len(self.ofc.pipeline)):
69
+ logger.info(f"Invoking solver: {idx}-{name}")
70
+ logger.debug(f"State content: {solver_output}")
71
+
72
+ try:
73
+ # Solver input is the output of the previous solver
74
+ solver_input = solver_output
75
+
76
+ # Run the solver
77
+ cont, solver_output = solver(solver_input, **kwargs)
78
+
79
+ # Persist the output
80
+ logger.debug(f"Latest result: {solver_output}")
81
+ if callback:
82
+ callback(
83
+ index=idx,
84
+ sample_name=sample_name,
85
+ solver_name=name,
86
+ input_name=input_name,
87
+ output_name=output_name,
88
+ input=solver_input.__dict__,
89
+ output=solver_output.__dict__,
90
+ continue_run=cont
91
+ )
92
+
93
+ self.persist_output(solver_output, idx, name, cont, sample_name=sample_name)
94
+
95
+ except:
96
+ logger.error(f"Error at {traceback.format_exc()}")
97
+ cont = False
98
+ output_name = input_name
99
+
100
+ # Break if the solver returns False
101
+ if not cont:
102
+ logger.info(f"Break at {name}")
103
+ break
104
+
105
+ return solver_output.get(output_name)
106
+
107
+ def evaluate_streaming(self, response: str, question: str = None, **kwargs):
108
+ """
109
+ Evaluate the response using the pipeline and stream the output
110
+ """
111
+
112
+ def evaluate_response():
113
+ # Check if sample_name is provided in kwargs else generate a random one
114
+ sample_name = kwargs.get("sample_name", str(uuid.uuid4().hex[:6]))
115
+
116
+ # Initialize the state
117
+ solver_output = FactCheckerState(question=question, response=response)
118
+
119
+ # Initialize the output name
120
+ output_name = "response"
121
+ for idx, (name, (solver, input_name, output_name)) in tqdm.tqdm(enumerate(self.ofc.pipeline.items()),
122
+ total=len(self.ofc.pipeline)):
123
+ logger.info(f"Invoking solver: {idx}-{name}")
124
+ logger.debug(f"State content: {solver_output}")
125
+
126
+ try:
127
+ # Solver input is the output of the previous solver
128
+ solver_input = solver_output
129
+
130
+ # Run the solver
131
+ cont, solver_output = solver(solver_input, **kwargs)
132
+
133
+ # Persist the output
134
+ logger.debug(f"Latest result: {solver_output}")
135
+
136
+ # Stream the output
137
+ yield {
138
+ "index": idx,
139
+ "solver_name": name,
140
+ "input_name": input_name,
141
+ "output_name": output_name,
142
+ "input": solver_input.__dict__,
143
+ "output": solver_output.__dict__,
144
+ "continue_run": cont
145
+ }
146
+
147
+ self.persist_output(solver_output, idx, name, cont, sample_name=sample_name)
148
+
149
+ except:
150
+ logger.error(f"Error at {traceback.format_exc()}")
151
+ cont = False
152
+ output_name = input_name
153
+
154
+ # Break if the solver returns False
155
+ if not cont:
156
+ logger.info(f"Break at {name}")
157
+ break
158
+
159
+ # Execute the generator if stream is True, otherwise process normally
160
+ return evaluate_response()
src/openfactcheck/lib/config.py CHANGED
@@ -1,6 +1,9 @@
1
  import os
2
  import json
3
  import yaml
 
 
 
4
  import datasets
5
  import transformers
6
  from pathlib import Path
@@ -21,7 +24,8 @@ with solver_config_templates_path as solver_config_templates_dir_path:
21
  # Import default solvers
22
  # TODO: Currently, only webservice solvers are supported as default solvers
23
  solver_templates_paths = [
24
- str(pkg_resources.files(solver_templates_dir) / 'webservice')
 
25
  ]
26
 
27
  class OpenFactCheckConfig:
@@ -70,9 +74,6 @@ class OpenFactCheckConfig:
70
  Secrets = namedtuple("Secrets", ["openai_api_key",
71
  "serper_api_key",
72
  "azure_search_key"])
73
- Pipeline = namedtuple("Pipeline", ["claimprocessor",
74
- "retriever",
75
- "verifier"])
76
 
77
  # Define Attributes
78
  self.config = None
@@ -113,10 +114,10 @@ class OpenFactCheckConfig:
113
 
114
  # Initialize template solver paths along with the user-defined solver paths
115
  if 'solver_paths' in self.config:
116
- self.solver_paths = solver_templates_paths + self.config['solver_paths']
117
  else:
118
  self.logger.warning("No solver paths found in the configuration file. Using default solver paths only.")
119
- self.solver_paths = solver_templates_paths
120
 
121
  # Initialize Output Path
122
  if 'output_path' in self.config:
@@ -129,9 +130,7 @@ class OpenFactCheckConfig:
129
 
130
  # Initialize Pipeline config
131
  if 'pipeline' in self.config:
132
- self.pipeline = Pipeline(claimprocessor=self.config['pipeline']['claimprocessor'],
133
- retriever=self.config['pipeline']['retriever'],
134
- verifier=self.config['pipeline']['verifier'])
135
  else:
136
  if self.solver_configs:
137
  solvers = list(self.solver_configs.keys())
@@ -147,7 +146,7 @@ class OpenFactCheckConfig:
147
  verifier = solver
148
  if claimprocessor and retriever and verifier:
149
  break
150
- self.pipeline = Pipeline(claimprocessor=claimprocessor, retriever=retriever, verifier=verifier)
151
  self.logger.warning(f"No pipeline found in the configuration file. Using first solver as default pipeline. ClaimProcessor: {claimprocessor}, Retriever: {retriever}, Verifier: {verifier}")
152
 
153
  # Initialize Secrets config
@@ -182,6 +181,8 @@ class OpenFactCheckConfig:
182
  # Disable Transformers and Datasets logging
183
  transformers.logging.set_verbosity_error()
184
  datasets.logging.set_verbosity_error()
 
 
185
 
186
  except FileNotFoundError:
187
  self.logger.error(f"Config file not found: {self.filename}")
 
1
  import os
2
  import json
3
  import yaml
4
+ import openai
5
+ import asyncio
6
+ import logging
7
  import datasets
8
  import transformers
9
  from pathlib import Path
 
24
  # Import default solvers
25
  # TODO: Currently, only webservice solvers are supported as default solvers
26
  solver_templates_paths = [
27
+ str(pkg_resources.files(solver_templates_dir) / 'webservice'),
28
+ str(pkg_resources.files(solver_templates_dir) / 'factool')
29
  ]
30
 
31
  class OpenFactCheckConfig:
 
74
  Secrets = namedtuple("Secrets", ["openai_api_key",
75
  "serper_api_key",
76
  "azure_search_key"])
 
 
 
77
 
78
  # Define Attributes
79
  self.config = None
 
114
 
115
  # Initialize template solver paths along with the user-defined solver paths
116
  if 'solver_paths' in self.config:
117
+ self.solver_paths = {"default": solver_templates_paths, "user_defined": self.config['solver_paths']}
118
  else:
119
  self.logger.warning("No solver paths found in the configuration file. Using default solver paths only.")
120
+ self.solver_paths = {"default": solver_templates_paths, "user_defined": []}
121
 
122
  # Initialize Output Path
123
  if 'output_path' in self.config:
 
130
 
131
  # Initialize Pipeline config
132
  if 'pipeline' in self.config:
133
+ self.pipeline = self.config['pipeline']
 
 
134
  else:
135
  if self.solver_configs:
136
  solvers = list(self.solver_configs.keys())
 
146
  verifier = solver
147
  if claimprocessor and retriever and verifier:
148
  break
149
+ self.pipeline = [claimprocessor, retriever, verifier]
150
  self.logger.warning(f"No pipeline found in the configuration file. Using first solver as default pipeline. ClaimProcessor: {claimprocessor}, Retriever: {retriever}, Verifier: {verifier}")
151
 
152
  # Initialize Secrets config
 
181
  # Disable Transformers and Datasets logging
182
  transformers.logging.set_verbosity_error()
183
  datasets.logging.set_verbosity_error()
184
+ logging.basicConfig(level=logging.ERROR)
185
+ logging.getLogger("asyncio").setLevel(logging.CRITICAL)
186
 
187
  except FileNotFoundError:
188
  self.logger.error(f"Config file not found: {self.filename}")
src/openfactcheck/solvers/factool/all_pass_abstain_detector.py CHANGED
@@ -1,10 +1,11 @@
1
- import logging
2
-
3
  from openfactcheck.core.state import FactCheckerState
4
  from openfactcheck.core.solver import StandardTaskSolver, Solver
5
 
6
- @Solver.register_solver("all_pass_abstain_detector", "response", "response")
7
  class AllPassAbstainDetector(StandardTaskSolver):
 
 
 
8
  def __init__(self, args):
9
  super().__init__(args)
10
 
 
 
 
1
  from openfactcheck.core.state import FactCheckerState
2
  from openfactcheck.core.solver import StandardTaskSolver, Solver
3
 
4
+ @Solver.register("all_pass_abstain_detector", "response", "response")
5
  class AllPassAbstainDetector(StandardTaskSolver):
6
+ """
7
+ A solver to detect if all the claims are abstained (i.e., no claim is made).
8
+ """
9
  def __init__(self, args):
10
  super().__init__(args)
11
 
src/openfactcheck/solvers/factool/concat_response_regenerator.py CHANGED
@@ -1,10 +1,11 @@
1
- from core.fact_check_state import FactCheckerState
2
- from core.task_solver import StandardTaskSolver
3
- from core import register_solver
4
 
5
-
6
- @register_solver("concat_response_generator", "claim_info", "output")
7
  class ConcatResponseRegenerator(StandardTaskSolver):
 
 
 
8
  def __init__(self, args):
9
  super().__init__(args)
10
 
@@ -13,6 +14,5 @@ class ConcatResponseRegenerator(StandardTaskSolver):
13
 
14
  edited_claims = [v["edited_claims"] for _, v in claim_info.items()]
15
  revised_document = " ".join(edited_claims).strip()
16
- # print(revised_document)
17
  state.set(self.output_name, revised_document)
18
  return True, state
 
1
+ from openfactcheck.core.state import FactCheckerState
2
+ from openfactcheck.core.solver import StandardTaskSolver, Solver
 
3
 
4
+ @Solver.register("concat_response_generator", "claim_info", "output")
 
5
  class ConcatResponseRegenerator(StandardTaskSolver):
6
+ """
7
+ A solver to concatenate the edited claims into a single document.
8
+ """
9
  def __init__(self, args):
10
  super().__init__(args)
11
 
 
14
 
15
  edited_claims = [v["edited_claims"] for _, v in claim_info.items()]
16
  revised_document = " ".join(edited_claims).strip()
 
17
  state.set(self.output_name, revised_document)
18
  return True, state
src/openfactcheck/solvers/factool/factool_blackbox.py CHANGED
@@ -1,38 +1,23 @@
1
- from core import register_solver, FactCheckerState, StandardTaskSolver
2
  from factool import Factool
3
- import os
4
 
 
 
5
 
6
- ##
7
- #
8
- # Factool Solver
9
- #
10
- # Notes:
11
- # Factool requires 3 input parameters: prompt, response, and category.
12
- # Category is always set to 'kbqa' (Knowledge Base Question Answering) for the purposes of this project.
13
- # Because of employing a pipeline of its own, with specific search engine and analysis tools, Factool requires several API keys to be set as environment variables.
14
- # That is:
15
- # openai_key - OpenAI API key (https://beta.openai.com/)
16
- # serper_key - Serper API key (https://serper.dev/)
17
- # scrapper_key - Scrapper API key (https://www.scraperapi.com/)
18
- # Additional parameters:
19
- # llm_in_use - The OpenAI LLM in use (e.g. gpt-4)
20
- #
21
- ##
22
- @register_solver("factool_blackbox", "response", "claim_info")
23
  class FactoolBlackboxSolver(StandardTaskSolver):
 
 
 
24
  def __init__(self, args):
25
  super().__init__(args)
26
  self.input_prompt = args.get("input_prompt", None)
27
- self.gpt_model = self.global_config.get("llm_in_use", "gpt-4")
28
- # self.input_prompt = args["input_prompt"] if "input_prompt" in args else None
29
- # self.gpt_model = args["llm_in_use"] if "llm_in_use" in args else "gpt-4"
30
 
31
  def __call__(self, state: FactCheckerState, *args, **kwargs):
32
  prompt = state.get(self.input_prompt)
33
  response = state.get(self.input_name)
34
 
35
- factool_instance = Factool(self.gpt_model)
36
 
37
  inputs = [{"prompt": prompt, "response": response, "category": "kbqa"}]
38
  claim_info = factool_instance.run(inputs)
 
 
1
  from factool import Factool
 
2
 
3
+ from openfactcheck.core.state import FactCheckerState
4
+ from openfactcheck.core.solver import StandardTaskSolver, Solver
5
 
6
+ @Solver.register("factool_blackbox", "response", "claim_info")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  class FactoolBlackboxSolver(StandardTaskSolver):
8
+ """
9
+ A solver to process the response using the Factool black box model.
10
+ """
11
  def __init__(self, args):
12
  super().__init__(args)
13
  self.input_prompt = args.get("input_prompt", None)
14
+ self.model_name = self.global_config.get("model_name", "gpt-4o")
 
 
15
 
16
  def __call__(self, state: FactCheckerState, *args, **kwargs):
17
  prompt = state.get(self.input_prompt)
18
  response = state.get(self.input_name)
19
 
20
+ factool_instance = Factool(self.model_name)
21
 
22
  inputs = [{"prompt": prompt, "response": response, "category": "kbqa"}]
23
  claim_info = factool_instance.run(inputs)
src/openfactcheck/solvers/factool/factool_blackbox_post_editor.py CHANGED
@@ -1,55 +1,15 @@
1
  import json
2
- from core import register_solver, FactCheckerState, StandardTaskSolver
3
 
4
- # Factool example.py category=kbqa response protocol
5
- '''
6
- {
7
- 'average_claim_level_factuality': 0.0,
8
- 'average_response_level_factuality': 0.0,
9
- 'detailed_information': [
10
- {
11
- 'prompt': 'Introduce Graham Neubig',
12
- 'response': 'Graham Neubig is a professor at MIT',
13
- 'category': 'kbqa',
14
- 'claims': [
15
- {
16
- 'claim': 'Graham Neubig is a professor at MIT'
17
- }
18
- ],
19
- 'queries': [
20
- [ 'Is Graham Neubig a professor at MIT?', 'Graham Neubig professorship' ]
21
- ],
22
- 'evidences': [
23
- {
24
- 'evidence': [ 'I am an Associate Professor at the Carnegie Mellon University Language Technology Institute in the School of Computer Science, and work with a bunch of great ...', 'Missing: MIT? | Show results with:MIT?', 'EI Seminar - Graham Neubig - Learning to Explain and ...', 'Duration: 57:54', 'Posted: Feb 17, 2023', 'I am an Associate Professor at the Carnegie Mellon University Language Technology Institute in the School of Computer Science, and work with a bunch of great ...', 'My research is concerned with language and its role in human communication. In particular, my long-term research goal is to break down barriers in human-human ...', 'Graham Neubig. Associate Professor. Research Interests: Machine Translation · Natural Language Processing · Spoken Language Processing · Machine Learning. My ...', "I am an Associate Professor of Computer Science at Carnegie Mellon University and CEO of… | Learn more about Graham Neubig's work experience, education, ...", 'Graham Neubig received the B.E. degree from the University of Illinois, Urbana ... He is currently an Assistant Professor with Carnegie Mellon University ...' ],
25
- 'source': [ 'http://www.phontron.com/', 'http://www.phontron.com/', 'https://youtube.com/watch?v=CtcP5bvODzY', 'https://youtube.com/watch?v=CtcP5bvODzY', 'https://youtube.com/watch?v=CtcP5bvODzY', 'http://www.phontron.com/', 'https://www.phontron.com/research.php', 'https://lti.cs.cmu.edu/people/222217661/graham-neubig', 'https://www.linkedin.com/in/graham-neubig-10b41616b', 'https://ieeexplore.ieee.org/author/37591106000' ]
26
- }
27
- ],
28
- 'claim_level_factuality': [
29
- {
30
- 'reasoning': 'The given text is non-factual. Multiple pieces of evidence indicate that Graham Neubig is an Associate Professor at the Carnegie Mellon University Language Technology Institute in the School of Computer Science, not at MIT.',
31
- 'error': 'Graham Neubig is not a professor at MIT.',
32
- 'correction': 'Graham Neubig is a professor at Carnegie Mellon University.',
33
- 'factuality': False,
34
- 'claim': 'Graham Neubig is a professor at MIT'
35
- }
36
- ],
37
- 'response_level_factuality': False
38
- }
39
- ]
40
- }
41
- '''
42
 
43
- ##
44
- #
45
- # Factool Data Post-Editor
46
- #
47
- # Notes:
48
- # Factool response post-processor. Used to presents the results in human-readable format and to save the analysis in a JSON file.
49
- #
50
- ##
51
- @register_solver("factool_blackbox_post_editor", "claim_info", "claim_info")
52
  class FactoolBlackboxPostEditor(StandardTaskSolver):
 
 
 
 
 
53
  def __init__(self, args):
54
  super().__init__(args)
55
  self.path_save_analysis = args.get("path_save_analysis","factool_evidence_analysis.json")
 
1
  import json
 
2
 
3
+ from openfactcheck.core.state import FactCheckerState
4
+ from openfactcheck.core.solver import StandardTaskSolver, Solver
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
+ @Solver.register("factool_blackbox_post_editor", "claim_info", "claim_info")
 
 
 
 
 
 
 
 
7
  class FactoolBlackboxPostEditor(StandardTaskSolver):
8
+ """
9
+ A solver to post-process the results of the Factool black box model.
10
+ Used to presents the results in human-readable format and to save the analysis in a JSON file.
11
+ """
12
+
13
  def __init__(self, args):
14
  super().__init__(args)
15
  self.path_save_analysis = args.get("path_save_analysis","factool_evidence_analysis.json")
src/openfactcheck/solvers/factool/factool_claim_examiner.py CHANGED
@@ -1,38 +1,23 @@
1
- from core.fact_check_state import FactCheckerState
2
- from core.task_solver import StandardTaskSolver
3
- from core import register_solver
4
- from .ftool_utils.chat_api import OpenAIChat
5
- import yaml
6
- import os
7
  import json
8
 
 
 
9
 
10
- ##
11
- #
12
- # Factool Claim Examiner
13
- #
14
- # Notes:
15
- # - This solver is used to examine the claims in a response.
16
- #
17
- ##
18
- @register_solver("factool_claim_examiner", "evidences", "claim_info")
19
  class FactoolClaimExaminer(StandardTaskSolver):
 
 
 
20
  def __init__(self, args):
21
  super().__init__(args)
22
- self.gpt_model = self.global_config.get("llm_in_use", "gpt-4")
23
  self.path_save_stance = args.get("path_save_stance", "evidence_stance.json")
24
  self.verifications = None
25
- self.gpt = OpenAIChat(self.gpt_model)
26
- self.verification_prompt = yaml.load(
27
- open(
28
- os.path.join(
29
- os.path.dirname(os.path.abspath(__file__)),
30
- "ftool_utils/prompts.yaml",
31
- ),
32
- "r",
33
- ),
34
- yaml.FullLoader,
35
- )["verification"]
36
 
37
  # async def coro (self, factool_instance, claims_in_response, evidences):
38
  # self.verifications = await factool_instance.pipelines["kbqa_online"]._verification(claims_in_response, evidences)
@@ -72,36 +57,28 @@ class FactoolClaimExaminer(StandardTaskSolver):
72
  # print(f'Verification for claim {key}: {verifications[index]}\n')
73
  # print(f'Verification for claim {key}: Type = {type(verifications[index])}\n')
74
  stance = ""
75
- if (
76
- type(verifications[index]) == None
77
- or verifications[index] == "None"
78
- ):
79
  stance = claims_in_response[index]["claim"]
80
  else:
81
- stance = (
82
- ""
83
- if (
84
- verifications[index]["error"] == "None"
85
- or len(verifications[index]["error"]) == 0
86
- )
87
- else (verifications[index]["error"] + " ")
88
- )
89
- stance += (
90
- ""
91
- if (
92
- verifications[index]["reasoning"] == "None"
93
- or len(verifications[index]["reasoning"]) == 0
94
- )
95
- else verifications[index]["reasoning"]
96
- )
97
- stance += (
98
- claims_in_response[index]["claim"]
99
- if (
100
- verifications[index]["correction"] == "None"
101
- or len(verifications[index]["correction"]) == 0
102
- )
103
- else (" " + verifications[index]["correction"])
104
- )
105
  claim_info[key]["stances"] = [stance]
106
  for j in range(len(claim_info[key]["evidence_list"])):
107
  claim_info[key]["evidence_list"][j]["stance"] = stance
@@ -114,8 +91,6 @@ class FactoolClaimExaminer(StandardTaskSolver):
114
  with open(self.path_save_stance, "w") as outfile:
115
  outfile.write(json_object)
116
 
117
- # print(claim_info)
118
-
119
  state.set(self.output_name, claim_info)
120
  return True, state
121
 
@@ -123,8 +98,10 @@ class FactoolClaimExaminer(StandardTaskSolver):
123
  messages_list = [
124
  [
125
  {"role": "system", "content": self.verification_prompt['system']},
126
- {"role": "user", "content": self.verification_prompt['user'].format(claim=claim, evidence=str(
127
- [e[1] for e in evidence]))},
 
 
128
  ]
129
  for claim, evidence in claims_with_evidences.items()
130
  ]
 
 
 
 
 
 
 
1
  import json
2
 
3
+ from .factool_utils.chat_api import OpenAIChat
4
+ from .factool_utils.prompt import VERIFICATION_PROMPT
5
 
6
+ from openfactcheck.core.state import FactCheckerState
7
+ from openfactcheck.core.solver import StandardTaskSolver, Solver
8
+
9
+ @Solver.register("factool_claim_examiner", "evidences", "claim_info")
 
 
 
 
 
10
  class FactoolClaimExaminer(StandardTaskSolver):
11
+ """
12
+ A solver to examine the claims in a response.
13
+ """
14
  def __init__(self, args):
15
  super().__init__(args)
16
+ self.model_name = self.global_config.get("model_name", "gpt-4o")
17
  self.path_save_stance = args.get("path_save_stance", "evidence_stance.json")
18
  self.verifications = None
19
+ self.gpt = OpenAIChat(self.model_name)
20
+ self.verification_prompt = VERIFICATION_PROMPT
 
 
 
 
 
 
 
 
 
21
 
22
  # async def coro (self, factool_instance, claims_in_response, evidences):
23
  # self.verifications = await factool_instance.pipelines["kbqa_online"]._verification(claims_in_response, evidences)
 
57
  # print(f'Verification for claim {key}: {verifications[index]}\n')
58
  # print(f'Verification for claim {key}: Type = {type(verifications[index])}\n')
59
  stance = ""
60
+ index = 0 # Ensure the 'index' variable is defined somewhere appropriate in your context
61
+
62
+ # Check if verifications at the current index is None or 'None'
63
+ if verifications[index] is None or verifications[index] == "None":
64
  stance = claims_in_response[index]["claim"]
65
  else:
66
+ # Initialize stance with error or empty string
67
+ error = verifications[index].get("error", "")
68
+ if error and error != "None":
69
+ stance = error + " "
70
+
71
+ # Append reasoning if it exists and is not 'None'
72
+ reasoning = verifications[index].get("reasoning", "")
73
+ if reasoning and reasoning != "None":
74
+ stance += reasoning
75
+
76
+ # Append claim or correction if available
77
+ correction = verifications[index].get("correction", "")
78
+ if correction and correction != "None":
79
+ stance += " " + correction
80
+ else:
81
+ stance += claims_in_response[index]["claim"]
 
 
 
 
 
 
 
 
82
  claim_info[key]["stances"] = [stance]
83
  for j in range(len(claim_info[key]["evidence_list"])):
84
  claim_info[key]["evidence_list"][j]["stance"] = stance
 
91
  with open(self.path_save_stance, "w") as outfile:
92
  outfile.write(json_object)
93
 
 
 
94
  state.set(self.output_name, claim_info)
95
  return True, state
96
 
 
98
  messages_list = [
99
  [
100
  {"role": "system", "content": self.verification_prompt['system']},
101
+ {"role": "user", "content": self.verification_prompt['user'].format(
102
+ claim=claim,
103
+ evidence=str([e[1] for e in evidence if isinstance(e, (list, tuple)) and len(e) > 1])
104
+ )}
105
  ]
106
  for claim, evidence in claims_with_evidences.items()
107
  ]
src/openfactcheck/solvers/factool/factool_decontextualizer.py CHANGED
@@ -1,38 +1,21 @@
1
- from core import register_solver, StandardTaskSolver, FactCheckerState
2
- import asyncio
3
- import nest_asyncio
4
- from factool import Factool
5
- from .ftool_utils.chat_api import OpenAIChat
6
- import yaml
7
  import os
8
- from typing import List
9
 
 
 
 
 
10
 
11
- ##
12
- #
13
- # Factool Decontextualizer
14
- #
15
- # Notes:
16
- # - This solver is used to extract claims from a response.
17
- # - The response should be a string.
18
- #
19
- ##
20
- @register_solver("factool_decontextualizer", "response", "claims")
21
  class FactoolDecontextualizer(StandardTaskSolver):
 
 
 
22
  def __init__(self, args):
23
  super().__init__(args)
24
- self.gpt_model = self.global_config.get("llm_in_use", "gpt-3.5-turbo")
25
  self.gpt = OpenAIChat(self.gpt_model)
26
- self.claim_prompt = yaml.load(
27
- open(
28
- os.path.join(
29
- os.path.dirname(os.path.abspath(__file__)),
30
- "ftool_utils/prompts.yaml",
31
- ),
32
- "r",
33
- ),
34
- yaml.FullLoader,
35
- )["claim_extraction"]
36
 
37
  def __call__(self, state: FactCheckerState, *args, **kwargs):
38
  response = state.get(self.input_name)
@@ -55,4 +38,4 @@ class FactoolDecontextualizer(StandardTaskSolver):
55
  ]
56
  for response in responses
57
  ]
58
- return self.gpt.run(messages_list, List)
 
 
 
 
 
 
 
1
  import os
2
+ import yaml
3
 
4
+ from .factool_utils.chat_api import OpenAIChat
5
+ from .factool_utils.prompt import CLAIM_EXTRACTION_PROMPT
6
+ from openfactcheck.core.solver import StandardTaskSolver, Solver
7
+ from openfactcheck.core.state import FactCheckerState
8
 
9
+ @Solver.register("factool_decontextualizer", "response", "claims")
 
 
 
 
 
 
 
 
 
10
  class FactoolDecontextualizer(StandardTaskSolver):
11
+ """
12
+ A solver to extract claims from a response.
13
+ """
14
  def __init__(self, args):
15
  super().__init__(args)
16
+ self.gpt_model = self.global_config.get("llm_in_use", "gpt-4o")
17
  self.gpt = OpenAIChat(self.gpt_model)
18
+ self.claim_prompt = CLAIM_EXTRACTION_PROMPT
 
 
 
 
 
 
 
 
 
19
 
20
  def __call__(self, state: FactCheckerState, *args, **kwargs):
21
  response = state.get(self.input_name)
 
38
  ]
39
  for response in responses
40
  ]
41
+ return self.gpt.run(messages_list, list)
src/openfactcheck/solvers/factool/factool_evidence_retriever.py CHANGED
@@ -1,42 +1,28 @@
1
- from core import register_solver, StandardTaskSolver, FactCheckerState
2
- from typing import List, Dict, Any
3
  import json
4
- from .ftool_utils.chat_api import OpenAIChat
5
- from .ftool_utils.search_api import GoogleSerperAPIWrapper
6
- import yaml
7
- import os
8
 
9
- ##
10
- #
11
- # Factool Evidence Retriever
12
- #
13
- # Notes:
14
- # - This solver is used to retrieve evidences (online content + its sources) for a list of claims.
15
- # - The claims should be a list of strings.
16
- # - The evidences are saved in a JSON file.
17
- #
18
- ##
19
- @register_solver("factool_evidence_retriever", "claims", "evidences")
20
  class FactoolEvidenceRetriever(StandardTaskSolver):
 
 
 
21
  def __init__(self, args):
22
  super().__init__(args)
23
- self.gpt_model = self.global_config.get("llm_in_use", "gpt-4")
24
  self.gpt = OpenAIChat(self.gpt_model)
 
25
  self.path_save_evidence = args.get("path_save_evidence", "evidence.json")
26
- # self.path_save_evidence = args["path_save_evidence"] if "path_save_evidence" in args else "evidence.json"
27
  self.queries = None
28
  self.search_outputs_for_claims = None
29
 
30
- self.query_prompt = yaml.load(
31
- open(
32
- os.path.join(
33
- os.path.dirname(os.path.abspath(__file__)),
34
- "ftool_utils/prompts.yaml",
35
- ),
36
- "r",
37
- ),
38
- yaml.FullLoader,
39
- )["query_generation"]
40
 
41
  self.search_engine = GoogleSerperAPIWrapper(snippet_cnt=10)
42
 
@@ -52,9 +38,9 @@ class FactoolEvidenceRetriever(StandardTaskSolver):
52
  search_outputs_for_claims = self.search_engine.run(queries)
53
 
54
 
55
- evidences: Dict[str, Dict[str, Any]] = {}
56
  for i, claim in enumerate(claims):
57
- evidence_list: List[dict] = []
58
  for j, search_outputs_for_claim in enumerate(
59
  search_outputs_for_claims[i]
60
  ):
@@ -81,8 +67,6 @@ class FactoolEvidenceRetriever(StandardTaskSolver):
81
  with open(self.path_save_evidence, "w") as outfile:
82
  outfile.write(json_object)
83
 
84
- # print(evidences)
85
-
86
  state.set(self.output_name, evidences)
87
  return True, state
88
 
@@ -97,4 +81,4 @@ class FactoolEvidenceRetriever(StandardTaskSolver):
97
  ]
98
  for claim in claims
99
  ]
100
- return self.gpt.run(messages_list, List)
 
 
 
1
  import json
2
+ from typing import Any
 
 
 
3
 
4
+ from .factool_utils.chat_api import OpenAIChat
5
+ from .factool_utils.search_api import GoogleSerperAPIWrapper
6
+ from .factool_utils.prompt import QUERY_GENERATION_PROMPT
7
+
8
+ from openfactcheck.core.state import FactCheckerState
9
+ from openfactcheck.core.solver import StandardTaskSolver, Solver
10
+
11
+ @Solver.register("factool_evidence_retriever", "claims", "evidences")
 
 
 
12
  class FactoolEvidenceRetriever(StandardTaskSolver):
13
+ """
14
+ A solver to retrieve evidences for a list of evidence. (online content + its sources) for a list of claims.
15
+ """
16
  def __init__(self, args):
17
  super().__init__(args)
18
+ self.gpt_model = self.global_config.get("llm_in_use", "gpt-4o")
19
  self.gpt = OpenAIChat(self.gpt_model)
20
+
21
  self.path_save_evidence = args.get("path_save_evidence", "evidence.json")
 
22
  self.queries = None
23
  self.search_outputs_for_claims = None
24
 
25
+ self.query_prompt = QUERY_GENERATION_PROMPT
 
 
 
 
 
 
 
 
 
26
 
27
  self.search_engine = GoogleSerperAPIWrapper(snippet_cnt=10)
28
 
 
38
  search_outputs_for_claims = self.search_engine.run(queries)
39
 
40
 
41
+ evidences: dict[str, dict[str, Any]] = {}
42
  for i, claim in enumerate(claims):
43
+ evidence_list: list[dict] = []
44
  for j, search_outputs_for_claim in enumerate(
45
  search_outputs_for_claims[i]
46
  ):
 
67
  with open(self.path_save_evidence, "w") as outfile:
68
  outfile.write(json_object)
69
 
 
 
70
  state.set(self.output_name, evidences)
71
  return True, state
72
 
 
81
  ]
82
  for claim in claims
83
  ]
84
+ return self.gpt.run(messages_list, list)
src/openfactcheck/solvers/factool/factool_example.py DELETED
@@ -1,18 +0,0 @@
1
- import os
2
- from pipeline import Pipeline
3
- from argparse import Namespace
4
-
5
- # Base directory where the script is located
6
- base_dir = os.path.abspath(os.path.dirname(__file__))
7
-
8
- args = Namespace(
9
- user_src=os.path.join(base_dir),
10
- config=os.path.join(base_dir, "../../config/factool_config.yaml"),
11
- output=os.path.join(base_dir, "../../../output")
12
- )
13
-
14
- p = Pipeline(args)
15
- question = "Who is Alan Turing?"
16
- response = "Alan Turing was a British mathematician, logician, cryptanalyst, and computer scientist. He was highly influential in the development of theoretical computer science."
17
-
18
- print(p(question=question, response=response))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/openfactcheck/solvers/factool/factool_post_editor.py CHANGED
@@ -1,15 +1,12 @@
1
- from core import register_solver, FactCheckerState, StandardTaskSolver
 
2
 
3
- ##
4
- #
5
- # Factool Data Post-Editor
6
- #
7
- # Notes:
8
- # Factool response post-processor. Used to presents the results in human-readable format and to save the analysis in a JSON file.
9
- #
10
- ##
11
- @register_solver("factool_post_editor", "claim_info", "claim_info")
12
  class FactoolPostEditor(StandardTaskSolver):
 
 
 
 
13
  def __init__(self, args):
14
  super().__init__(args)
15
 
 
1
+ from openfactcheck.core.state import FactCheckerState
2
+ from openfactcheck.core.solver import StandardTaskSolver, Solver
3
 
4
+ @Solver.register("factool_post_editor", "claim_info", "claim_info")
 
 
 
 
 
 
 
 
5
  class FactoolPostEditor(StandardTaskSolver):
6
+ """
7
+ A solver to post-process the results of the Factool model.
8
+ Used to presents the results in human-readable format and to save the analysis in a JSON file.
9
+ """
10
  def __init__(self, args):
11
  super().__init__(args)
12
 
src/openfactcheck/solvers/factool/factool_utils/__init__.py ADDED
File without changes
src/openfactcheck/solvers/factool/{ftool_utils → factool_utils}/chat_api.py RENAMED
@@ -15,12 +15,6 @@ import openai
15
  from openai import OpenAI, AsyncOpenAI
16
  import re
17
 
18
-
19
- # from factool.env_config import factool_env_config
20
-
21
- # env
22
- # openai.api_key = factool_env_config.openai_api_key
23
-
24
  class OpenAIChat():
25
  def __init__(
26
  self,
@@ -97,11 +91,9 @@ class OpenAIChat():
97
  '''
98
  return None
99
 
100
- async def dispatch_openai_requests(
101
- self,
102
- messages_list,
103
- ) -> list[str]:
104
- """Dispatches requests to OpenAI API asynchronously.
105
 
106
  Args:
107
  messages_list: List of messages to be sent to OpenAI ChatCompletion API.
@@ -109,7 +101,7 @@ class OpenAIChat():
109
  List of responses from OpenAI API.
110
  """
111
  async def _request_with_retry(messages, retry=3):
112
- for _ in range(retry):
113
  try:
114
  response = await self.client.chat.completions.create(
115
  model=self.config['model_name'],
@@ -119,39 +111,22 @@ class OpenAIChat():
119
  top_p=self.config['top_p']
120
  )
121
  return response
122
- except openai.RateLimitError:
123
- await asyncio.sleep(1)
124
- except openai.Timeout:
125
- await asyncio.sleep(1)
126
- except openai.APIError:
127
- await asyncio.sleep(1)
128
- # except openai.err
129
-
130
-
131
- # except openai.error.RateLimitError:
132
- # print('Rate limit error, waiting for 40 second...')
133
- # await asyncio.sleep(40)
134
- # except openai.error.APIError:
135
- # print('API error, waiting for 1 second...')
136
- # await asyncio.sleep(1)
137
- # except openai.error.Timeout:
138
- # print('Timeout error, waiting for 1 second...')
139
- # await asyncio.sleep(1)
140
- # except openai.error.ServiceUnavailableError:
141
- # print('Service unavailable error, waiting for 3 second...')
142
- # await asyncio.sleep(3)
143
- # except openai.error.APIConnectionError:
144
- # print('API Connection error, waiting for 3 second...')
145
- # await asyncio.sleep(3)
146
-
147
- return None
148
 
149
  async_responses = [
150
  _request_with_retry(messages)
151
  for messages in messages_list
152
  ]
153
 
154
- return await asyncio.gather(*async_responses)
155
 
156
  def run(self, messages_list, expected_type):
157
  retry = 1
@@ -159,7 +134,6 @@ class OpenAIChat():
159
  messages_list_cur_index = [i for i in range(len(messages_list))]
160
 
161
  while retry > 0 and len(messages_list_cur_index) > 0:
162
- print(f'{retry} retry left...')
163
  messages_list_cur = [messages_list[i] for i in messages_list_cur_index]
164
 
165
  predictions = asyncio.run(self.dispatch_openai_requests(
 
15
  from openai import OpenAI, AsyncOpenAI
16
  import re
17
 
 
 
 
 
 
 
18
  class OpenAIChat():
19
  def __init__(
20
  self,
 
91
  '''
92
  return None
93
 
94
+ async def dispatch_openai_requests(self, messages_list,) -> list[str]:
95
+ """
96
+ Dispatches requests to OpenAI API asynchronously.
 
 
97
 
98
  Args:
99
  messages_list: List of messages to be sent to OpenAI ChatCompletion API.
 
101
  List of responses from OpenAI API.
102
  """
103
  async def _request_with_retry(messages, retry=3):
104
+ for attempt in range(retry):
105
  try:
106
  response = await self.client.chat.completions.create(
107
  model=self.config['model_name'],
 
111
  top_p=self.config['top_p']
112
  )
113
  return response
114
+ except openai.RateLimitError as e:
115
+ await asyncio.sleep((2 ** attempt) * 0.5) # exponential backoff
116
+ except (openai.Timeout, openai.APIError) as e:
117
+ await asyncio.sleep((2 ** attempt) * 0.5) # exponential backoff
118
+ except Exception as e:
119
+ # Log unexpected exception for further investigation
120
+ await asyncio.sleep((2 ** attempt) * 0.5) # fallback in case of unknown errors
121
+
122
+ raise RuntimeError("All retries failed for OpenAI API request")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
 
124
  async_responses = [
125
  _request_with_retry(messages)
126
  for messages in messages_list
127
  ]
128
 
129
+ return await asyncio.gather(*async_responses, return_exceptions=True)
130
 
131
  def run(self, messages_list, expected_type):
132
  retry = 1
 
134
  messages_list_cur_index = [i for i in range(len(messages_list))]
135
 
136
  while retry > 0 and len(messages_list_cur_index) > 0:
 
137
  messages_list_cur = [messages_list[i] for i in messages_list_cur_index]
138
 
139
  predictions = asyncio.run(self.dispatch_openai_requests(
src/openfactcheck/solvers/factool/factool_utils/prompt.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """All prompts used for fact-checking subtasks prompting."""
2
+
3
+ CLAIM_EXTRACTION_PROMPT = {
4
+ "system": "Please provide the claim you would like to fact-check.",
5
+ "user": """You are given a piece of text that includes knowledge claims. A claim is a statement that asserts something as true or false, which can be verified by humans. Your task is to accurately identify and extract every claim stated in the provided text. Then, resolve any coreference (pronouns or other referring expressions) in the claim for clarity. Each claim should be concise (less than 15 words) and self-contained.
6
+ Your response MUST be a list of dictionaries. Each dictionary should contains the key "claim", which correspond to the extracted claim (with all coreferences resolved).
7
+ You MUST only respond in the format as described below. DO NOT RESPOND WITH ANYTHING ELSE. ADDING ANY OTHER EXTRA NOTES THAT VIOLATE THE RESPONSE FORMAT IS BANNED. START YOUR RESPONSE WITH '['.
8
+ [response format]:
9
+ [
10
+ {{
11
+ "claim": "Ensure that the claim is fewer than 15 words and conveys a complete idea. Resolve any coreference (pronouns or other referring expressions) in the claim for clarity",
12
+ }},
13
+ ...
14
+ ]
15
+
16
+ Here are two examples:
17
+ [text]: Tomas Berdych defeated Gael Monfis 6-1, 6-4 on Saturday. The sixth-seed reaches Monte Carlo Masters final for the first time . Berdych will face either Rafael Nadal or Novak Djokovic in the final.
18
+ [response]: [{{"claim": "Tomas Berdych defeated Gael Monfis 6-1, 6-4"}}, {{"claim": "Tomas Berdych defeated Gael Monfis 6-1, 6-4 on Saturday"}}, {{"claim": "Tomas Berdych reaches Monte Carlo Masters final"}}, {{"claim": "Tomas Berdych is the sixth-seed"}}, {{"claim": "Tomas Berdych reaches Monte Carlo Masters final for the first time"}}, {{"claim": "Berdych will face either Rafael Nadal or Novak Djokovic"}}, {{"claim": "Berdych will face either Rafael Nadal or Novak Djokovic in the final"}}]
19
+
20
+ [text]: Tinder only displays the last 34 photos - but users can easily see more. Firm also said it had improved its mutual friends feature.
21
+ [response]: [{{"claim": "Tinder only displays the last photos"}}, {{"claim": "Tinder only displays the last 34 photos"}}, {{"claim": "Tinder users can easily see more photos"}}, {{"claim": "Tinder said it had improved its feature"}}, {{"claim": "Tinder said it had improved its mutual friends feature"}}]
22
+
23
+ Now complete the following,ONLY RESPONSE IN A LIST FORMAT, NO OTHER WORDS!!!:
24
+ [text]: {input}
25
+ [response]:
26
+ """
27
+ }
28
+
29
+ QUERY_GENERATION_PROMPT = {
30
+ "system": "You are a query generator that generates effective and concise search engine queries to verify a given claim. You only response in a python list format(NO OTHER WORDS!)",
31
+ "user": """You are a query generator designed to help users verify a given claim using search engines. Your primary task is to generate a Python list of two effective and skeptical search engine queries. These queries should assist users in critically evaluating the factuality of a provided claim using search engines.
32
+ You should only respond in format as described below (a Python list of queries). PLEASE STRICTLY FOLLOW THE FORMAT. DO NOT RETURN ANYTHING ELSE. START YOUR RESPONSE WITH '['.
33
+ [response format]: ['query1', 'query2']
34
+
35
+ Here are three examples:
36
+ claim: The CEO of twitter is Bill Gates.
37
+ response: ["Who is the CEO of twitter?", "CEO Twitter"]
38
+
39
+ claim: Michael Phelps is the most decorated Olympian of all time.
40
+ response: ["Who is the most decorated Olympian of all time?", "Michael Phelps"]
41
+
42
+ claim: ChatGPT is created by Google.
43
+ response: ["Who created ChatGPT?", "ChatGPT"]
44
+
45
+ Now complete the following(ONLY RESPONSE IN A LIST FORMAT, DO NOT RETURN OTHER WORDS!!! START YOUR RESPONSE WITH '[' AND END WITH ']'):
46
+ claim: {input}
47
+ response:
48
+ """
49
+ }
50
+
51
+ VERIFICATION_PROMPT = {
52
+ "system": "You are a brilliant assistant.",
53
+ "user": """You are given a piece of text. Your task is to identify whether there are any factual errors within the text.
54
+ When you are judging the factuality of the given text, you could reference the provided evidences if needed. The provided evidences may be helpful. Some evidences may contradict to each other. You must be careful when using the evidences to judge the factuality of the given text.
55
+ The response should be a dictionary with three keys - "reasoning", "factuality", "error", and "correction", which correspond to the reasoning, whether the given text is factual or not (Boolean - True or False), the factual error present in the text, and the corrected text.
56
+ The following is the given text
57
+ [text]: {claim}
58
+ The following is the provided evidences
59
+ [evidences]: {evidence}
60
+ You should only respond in format as described below. DO NOT RETURN ANYTHING ELSE. START YOUR RESPONSE WITH '{{'.
61
+ [response format]:
62
+ {{
63
+ "reasoning": "Why is the given text factual or non-factual? Be careful when you said something is non-factual. When you said something is non-factual, you must provide multiple evidences to support your decision.",
64
+ "error": "None if the text is factual; otherwise, describe the error.",
65
+ "correction": "The corrected text if there is an error.",
66
+ "factuality": True if the given text is factual, False otherwise.
67
+ }}
68
+ """
69
+ }
src/openfactcheck/solvers/factool/{ftool_utils → factool_utils}/search_api.py RENAMED
File without changes
src/openfactcheck/solvers/factool/ftool_utils/prompts.yaml DELETED
@@ -1,67 +0,0 @@
1
- claim_extraction:
2
- system: |-
3
- You are a brilliant assistant.
4
- user: |-
5
- You are given a piece of text that includes knowledge claims. A claim is a statement that asserts something as true or false, which can be verified by humans. Your task is to accurately identify and extract every claim stated in the provided text. Then, resolve any coreference (pronouns or other referring expressions) in the claim for clarity. Each claim should be concise (less than 15 words) and self-contained.
6
- Your response MUST be a list of dictionaries. Each dictionary should contains the key "claim", which correspond to the extracted claim (with all coreferences resolved).
7
- You MUST only respond in the format as described below. DO NOT RESPOND WITH ANYTHING ELSE. ADDING ANY OTHER EXTRA NOTES THAT VIOLATE THE RESPONSE FORMAT IS BANNED. START YOUR RESPONSE WITH '['.
8
- [response format]:
9
- [
10
- {{
11
- "claim": "Ensure that the claim is fewer than 15 words and conveys a complete idea. Resolve any coreference (pronouns or other referring expressions) in the claim for clarity",
12
- }},
13
- ...
14
- ]
15
-
16
- Here are two examples:
17
- [text]: Tomas Berdych defeated Gael Monfis 6-1, 6-4 on Saturday. The sixth-seed reaches Monte Carlo Masters final for the first time . Berdych will face either Rafael Nadal or Novak Djokovic in the final.
18
- [response]: [{{"claim": "Tomas Berdych defeated Gael Monfis 6-1, 6-4"}}, {{"claim": "Tomas Berdych defeated Gael Monfis 6-1, 6-4 on Saturday"}}, {{"claim": "Tomas Berdych reaches Monte Carlo Masters final"}}, {{"claim": "Tomas Berdych is the sixth-seed"}}, {{"claim": "Tomas Berdych reaches Monte Carlo Masters final for the first time"}}, {{"claim": "Berdych will face either Rafael Nadal or Novak Djokovic"}}, {{"claim": "Berdych will face either Rafael Nadal or Novak Djokovic in the final"}}]
19
-
20
- [text]: Tinder only displays the last 34 photos - but users can easily see more. Firm also said it had improved its mutual friends feature.
21
- [response]: [{{"claim": "Tinder only displays the last photos"}}, {{"claim": "Tinder only displays the last 34 photos"}}, {{"claim": "Tinder users can easily see more photos"}}, {{"claim": "Tinder said it had improved its feature"}}, {{"claim": "Tinder said it had improved its mutual friends feature"}}]
22
-
23
- Now complete the following,ONLY RESPONSE IN A LIST FORMAT, NO OTHER WORDS!!!:
24
- [text]: {input}
25
- [response]:
26
-
27
- query_generation:
28
- system: |-
29
- You are a query generator that generates effective and concise search engine queries to verify a given claim. You only response in a python list format(NO OTHER WORDS!)
30
- user: |-
31
- You are a query generator designed to help users verify a given claim using search engines. Your primary task is to generate a Python list of two effective and skeptical search engine queries. These queries should assist users in critically evaluating the factuality of a provided claim using search engines.
32
- You should only respond in format as described below (a Python list of queries). PLEASE STRICTLY FOLLOW THE FORMAT. DO NOT RETURN ANYTHING ELSE. START YOUR RESPONSE WITH '['.
33
- [response format]: ['query1', 'query2']
34
-
35
- Here are three examples:
36
- claim: The CEO of twitter is Bill Gates.
37
- response: ["Who is the CEO of twitter?", "CEO Twitter"]
38
-
39
- claim: Michael Phelps is the most decorated Olympian of all time.
40
- response: ["Who is the most decorated Olympian of all time?", "Michael Phelps"]
41
-
42
- claim: ChatGPT is created by Google.
43
- response: ["Who created ChatGPT?", "ChatGPT"]
44
-
45
- Now complete the following(ONLY RESPONSE IN A LIST FORMAT, DO NOT RETURN OTHER WORDS!!! START YOUR RESPONSE WITH '[' AND END WITH ']'):
46
- claim: {input}
47
- response:
48
-
49
- verification:
50
- system: |-
51
- You are a brilliant assistant.
52
- user: |-
53
- You are given a piece of text. Your task is to identify whether there are any factual errors within the text.
54
- When you are judging the factuality of the given text, you could reference the provided evidences if needed. The provided evidences may be helpful. Some evidences may contradict to each other. You must be careful when using the evidences to judge the factuality of the given text.
55
- The response should be a dictionary with three keys - "reasoning", "factuality", "error", and "correction", which correspond to the reasoning, whether the given text is factual or not (Boolean - True or False), the factual error present in the text, and the corrected text.
56
- The following is the given text
57
- [text]: {claim}
58
- The following is the provided evidences
59
- [evidences]: {evidence}
60
- You should only respond in format as described below. DO NOT RETURN ANYTHING ELSE. START YOUR RESPONSE WITH '{{'.
61
- [response format]:
62
- {{
63
- "reasoning": "Why is the given text factual or non-factual? Be careful when you said something is non-factual. When you said something is non-factual, you must provide multiple evidences to support your decision.",
64
- "error": "None if the text is factual; otherwise, describe the error.",
65
- "correction": "The corrected text if there is an error.",
66
- "factuality": True if the given text is factual, False otherwise.
67
- }}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/openfactcheck/solvers/webservice/__init__.py ADDED
File without changes
src/openfactcheck/solvers/webservice/factool_utils/chat_api.py CHANGED
@@ -151,7 +151,7 @@ class OpenAIChat():
151
  for messages in messages_list
152
  ]
153
 
154
- return await asyncio.gather(*async_responses)
155
 
156
  def run(self, messages_list, expected_type):
157
  retry = 1
@@ -159,7 +159,6 @@ class OpenAIChat():
159
  messages_list_cur_index = [i for i in range(len(messages_list))]
160
 
161
  while retry > 0 and len(messages_list_cur_index) > 0:
162
- print(f'{retry} retry left...')
163
  messages_list_cur = [messages_list[i] for i in messages_list_cur_index]
164
 
165
  predictions = asyncio.run(self.dispatch_openai_requests(
 
151
  for messages in messages_list
152
  ]
153
 
154
+ return await asyncio.gather(*async_responses, return_exceptions=True)
155
 
156
  def run(self, messages_list, expected_type):
157
  retry = 1
 
159
  messages_list_cur_index = [i for i in range(len(messages_list))]
160
 
161
  while retry > 0 and len(messages_list_cur_index) > 0:
 
162
  messages_list_cur = [messages_list[i] for i in messages_list_cur_index]
163
 
164
  predictions = asyncio.run(self.dispatch_openai_requests(
src/openfactcheck/solvers/webservice/ftool_cp.py CHANGED
@@ -1,6 +1,3 @@
1
- import os
2
- import yaml
3
-
4
  from openfactcheck.core.state import FactCheckerState
5
  from openfactcheck.core.solver import StandardTaskSolver, Solver
6
 
 
 
 
 
1
  from openfactcheck.core.state import FactCheckerState
2
  from openfactcheck.core.solver import StandardTaskSolver, Solver
3