Hasan Iqbal
Added LLM Evaluation on Datasets
eca534f unverified
raw
history blame
8.42 kB
# the async version is adapted from https://gist.github.com/neubig/80de662fb3e225c18172ec218be4917a
from __future__ import annotations
import os
import yaml
import openai
import ast
import pdb
import asyncio
from typing import Any, List
import os
import pathlib
import openai
from openai import OpenAI, AsyncOpenAI
import re
# from factool.env_config import factool_env_config
# env
# openai.api_key = factool_env_config.openai_api_key
class OpenAIChat():
def __init__(
self,
model_name='gpt-3.5-turbo',
max_tokens=2500,
temperature=0,
top_p=1,
request_timeout=120,
):
if 'gpt' not in model_name:
openai.api_base = "http://localhost:8000/v1"
else:
# openai.api_base = "https://api.openai.com/v1"
openai.api_key = os.environ.get("OPENAI_API_KEY", None)
assert openai.api_key is not None, "Please set the OPENAI_API_KEY environment variable."
assert openai.api_key != '', "Please set the OPENAI_API_KEY environment variable."
self.client = AsyncOpenAI()
self.config = {
'model_name': model_name,
'max_tokens': max_tokens,
'temperature': temperature,
'top_p': top_p,
'request_timeout': request_timeout,
}
def extract_list_from_string(self, input_string):
# pattern = r'\[.*\]'
# result = re.search(pattern, input_string)
# if result:
# return result.group()
# else:
# return None
start_index = input_string.find('[')
end_index = input_string.rfind(']')
if start_index != -1 and end_index != -1 and start_index < end_index:
return input_string[start_index:end_index + 1]
else:
return None
def extract_dict_from_string(self, input_string):
start_index = input_string.find('{')
end_index = input_string.rfind('}')
if start_index != -1 and end_index != -1 and start_index < end_index:
return input_string[start_index:end_index + 1]
else:
return None
def _boolean_fix(self, output):
return output.replace("true", "True").replace("false", "False")
def _type_check(self, output, expected_type):
try:
output_eval = ast.literal_eval(output)
if not isinstance(output_eval, expected_type):
return None
return output_eval
except:
'''
if(expected_type == List):
valid_output = self.extract_list_from_string(output)
output_eval = ast.literal_eval(valid_output)
if not isinstance(output_eval, expected_type):
return None
return output_eval
elif(expected_type == dict):
valid_output = self.extract_dict_from_string(output)
output_eval = ast.literal_eval(valid_output)
if not isinstance(output_eval, expected_type):
return None
return output_eval
'''
return None
async def dispatch_openai_requests(
self,
messages_list,
) -> list[str]:
"""Dispatches requests to OpenAI API asynchronously.
Args:
messages_list: List of messages to be sent to OpenAI ChatCompletion API.
Returns:
List of responses from OpenAI API.
"""
async def _request_with_retry(messages, retry=3):
for _ in range(retry):
try:
response = await self.client.chat.completions.create(
model=self.config['model_name'],
messages=messages,
max_tokens=self.config['max_tokens'],
temperature=self.config['temperature'],
top_p=self.config['top_p']
)
return response
except openai.RateLimitError:
await asyncio.sleep(1)
except openai.Timeout:
await asyncio.sleep(1)
except openai.APIError:
await asyncio.sleep(1)
# except openai.err
# except openai.error.RateLimitError:
# print('Rate limit error, waiting for 40 second...')
# await asyncio.sleep(40)
# except openai.error.APIError:
# print('API error, waiting for 1 second...')
# await asyncio.sleep(1)
# except openai.error.Timeout:
# print('Timeout error, waiting for 1 second...')
# await asyncio.sleep(1)
# except openai.error.ServiceUnavailableError:
# print('Service unavailable error, waiting for 3 second...')
# await asyncio.sleep(3)
# except openai.error.APIConnectionError:
# print('API Connection error, waiting for 3 second...')
# await asyncio.sleep(3)
return None
async_responses = [
_request_with_retry(messages)
for messages in messages_list
]
return await asyncio.gather(*async_responses, return_exceptions=True)
def run(self, messages_list, expected_type):
retry = 1
responses = [None for _ in range(len(messages_list))]
messages_list_cur_index = [i for i in range(len(messages_list))]
while retry > 0 and len(messages_list_cur_index) > 0:
messages_list_cur = [messages_list[i] for i in messages_list_cur_index]
predictions = asyncio.run(self.dispatch_openai_requests(
messages_list=messages_list_cur,
))
preds = [self._type_check(self._boolean_fix(prediction.choices[0].message.content),
expected_type) if prediction is not None else None for prediction in predictions]
finised_index = []
for i, pred in enumerate(preds):
if pred is not None:
responses[messages_list_cur_index[i]] = pred
finised_index.append(messages_list_cur_index[i])
messages_list_cur_index = [i for i in messages_list_cur_index if i not in finised_index]
retry -= 1
return responses
# class OpenAIEmbed():
# def __init__():
# openai.api_key = os.environ.get("OPENAI_API_KEY", None)
# assert openai.api_key is not None, "Please set the OPENAI_API_KEY environment variable."
# assert openai.api_key != '', "Please set the OPENAI_API_KEY environment variable."
# async def create_embedding(self, text, retry=3):
# for _ in range(retry):
# try:
# response = await openai.Embedding.acreate(input=text, model="text-embedding-ada-002")
# return response
# except openai.error.RateLimitError:
# print('Rate limit error, waiting for 1 second...')
# await asyncio.sleep(1)
# except openai.error.APIError:
# print('API error, waiting for 1 second...')
# await asyncio.sleep(1)
# except openai.error.Timeout:
# print('Timeout error, waiting for 1 second...')
# await asyncio.sleep(1)
# return None
# async def process_batch(self, batch, retry=3):
# tasks = [self.create_embedding(text, retry=retry) for text in batch]
# return await asyncio.gather(*tasks)
# if __name__ == "__main__":
# chat = OpenAIChat(model_name='llama-2-7b-chat-hf')
# predictions = asyncio.run(chat.async_run(
# messages_list=[
# [{"role": "user", "content": "show either 'ab' or '['a']'. Do not do anything else."}],
# ] * 20,
# expected_type=List,
# ))
# print(predictions)
# Usage
# embed = OpenAIEmbed()
# batch = ["string1", "string2", "string3", "string4", "string5", "string6", "string7", "string8", "string9", "string10"] # Your batch of strings
# embeddings = asyncio.run(embed.process_batch(batch, retry=3))
# for embedding in embeddings:
# print(embedding["data"][0]["embedding"])