Hasan Iqbal
Added LLM Evaluation on Datasets
eca534f unverified
raw
history blame
3.22 kB
import json
from typing import Any
from .factool_utils.chat_api import OpenAIChat
from .factool_utils.search_api import GoogleSerperAPIWrapper
from .factool_utils.prompt import QUERY_GENERATION_PROMPT
from openfactcheck.core.state import FactCheckerState
from openfactcheck.core.solver import StandardTaskSolver, Solver
@Solver.register("factool_evidence_retriever", "claims", "evidences")
class FactoolEvidenceRetriever(StandardTaskSolver):
"""
A solver to retrieve evidences for a list of evidence. (online content + its sources) for a list of claims.
"""
def __init__(self, args):
super().__init__(args)
self.gpt_model = self.global_config.get("llm_in_use", "gpt-4o")
self.gpt = OpenAIChat(self.gpt_model)
self.path_save_evidence = args.get("path_save_evidence", "evidence.json")
self.queries = None
self.search_outputs_for_claims = None
self.query_prompt = QUERY_GENERATION_PROMPT
self.search_engine = GoogleSerperAPIWrapper(snippet_cnt=10)
# async def coro_queries (self, factool_instance, claims_in_response):
# self.queries = await factool_instance.pipelines["kbqa_online"]._query_generation(claims_in_response)
# async def coro_search_outputs_for_claims (self, factool_instance):
# self.search_outputs_for_claims = await factool_instance.pipelines["kbqa_online"].tool.run(self.queries)
def __call__(self, state: FactCheckerState, *args, **kwargs):
claims = state.get(self.input_name)
queries = self._query_generation(claims=claims)
search_outputs_for_claims = self.search_engine.run(queries)
evidences: dict[str, dict[str, Any]] = {}
for i, claim in enumerate(claims):
evidence_list: list[dict] = []
for j, search_outputs_for_claim in enumerate(
search_outputs_for_claims[i]
):
evidence_list.append(
{
"evidence_id": j,
"web_page_snippet_manual": search_outputs_for_claim["content"],
"query": [queries[i]],
"url": search_outputs_for_claim["source"],
"web_text": [],
}
)
evidences[claim] = {
"claim": claim,
"automatic_queries": queries[i],
"evidence_list": evidence_list,
}
# write to json file
# Serializing json
json_object = json.dumps(evidences, indent=4)
# Writing to sample.json
with open(self.path_save_evidence, "w") as outfile:
outfile.write(json_object)
state.set(self.output_name, evidences)
return True, state
def _query_generation(self, claims):
messages_list = [
[
{"role": "system", "content": self.query_prompt["system"]},
{
"role": "user",
"content": self.query_prompt["user"].format(input=claim),
},
]
for claim in claims
]
return self.gpt.run(messages_list, list)