File size: 6,535 Bytes
974cf69
 
 
 
 
 
 
 
 
 
eca534f
974cf69
 
 
 
 
 
eca534f
974cf69
 
 
eca534f
 
 
 
974cf69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eca534f
974cf69
 
 
 
 
 
 
 
 
 
eca534f
974cf69
 
 
 
 
eca534f
974cf69
 
 
 
 
 
 
 
 
 
 
 
eca534f
974cf69
eca534f
974cf69
eca534f
974cf69
eca534f
974cf69
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import uuid
import zipfile
import pandas as pd
import seaborn as sns
import streamlit as st
import matplotlib.pyplot as plt
from importlib import resources as pkg_resources

from openfactcheck.app.utils import metric_card
from openfactcheck.core.base import OpenFactCheck
from openfactcheck.templates import factchecker as templates_dir

# Import solver configuration templates
claims_templates_path = str(pkg_resources.files(templates_dir) / "claims.jsonl")
documents_templates_path = str(pkg_resources.files(templates_dir) / "documents.jsonl")

def evaluate_factchecker(ofc: OpenFactCheck):
    """
    This function creates a Streamlit app to evaluate a Factchecker.
    """
    
    # Initialize the FactChecker Evaluator
    fc_evaluator = ofc.FactCheckerEvaluator

    st.write("This is where you can evaluate the factuality of a FactChecker.")

    # Display the instructions
    st.write("Download the benchmark evaluate the factuality of a FactChecker.")

    # Check if the file exists
    if os.path.exists(claims_templates_path) and os.path.exists(documents_templates_path):
        # Create a ZIP file in memory
        from io import BytesIO
        memory_file = BytesIO()
        with zipfile.ZipFile(memory_file, 'w') as zf:
            # Define the name of the file within the ZIP archive
            zip_path = os.path.basename(claims_templates_path) # 'claims.jsonl'
            # Add file to the ZIP file
            zf.write(claims_templates_path, arcname=zip_path)

            # TODO: documents.jsonl functionality is still in development
            # zip_path = os.path.basename(documents_templates_path) # 'documents.jsonl'
            # # Add file to the ZIP file
            # zf.write(documents_templates_path, arcname=zip_path)
        
        # Reset pointer to start of the memory file
        memory_file.seek(0)

        # Create a download button and the file will be downloaded when clicked
        btn = st.download_button(
            label="Download",
            data=memory_file,
            file_name="openfactcheck_factchecker_benchmark.zip",
            mime="application/zip"
        )
    else:
        st.error("File not found.")

    # Display the instructions
    st.write("Upload the FactChecker responses as a JSON file below to evaluate the factuality.")

    # Upload the model output
    uploaded_file = st.file_uploader("Upload", type=["csv"], label_visibility="collapsed")

    # Check if the file is uploaded
    if uploaded_file is None:
        st.info("Please upload a CSV file.")
        return
    
    # Check if the file is a CSV file
    if uploaded_file.type != "text/csv":
        st.error("Invalid file format. Please upload a CSV file.")
        return
    
    # Read the CSV file
    uploaded_data = pd.read_csv(uploaded_file)

    def update_first_name():
        st.session_state.first_name = st.session_state.input_first_name

    def update_last_name():
        st.session_state.last_name = st.session_state.input_last_name

    def update_email():
        st.session_state.email = st.session_state.input_email

    def update_organization():
        st.session_state.organization = st.session_state.input_organization

    def update_factchecker():
        st.session_state.factchecker = st.session_state.input_factchecker

    def update_include_in_leaderboard():
        st.session_state.include_in_leaderboard = st.session_state.input_include_in_leaderboard

    # Display instructions
    st.write("Please provide the following information to be included in the leaderboard.")

    # Create text inputs to enter the user information
    st.session_state.id = uuid.uuid4().hex
    st.text_input("First Name", key="input_first_name", on_change=update_first_name)
    st.text_input("Last Name", key="input_last_name", on_change=update_last_name)
    st.text_input("Email", key="input_email", on_change=update_email)
    st.text_input("FactChecker Name", key="input_factchecker", on_change=update_factchecker)
    st.text_input("Organization (Optional)", key="input_organization", on_change=update_organization)

    st.checkbox("Please check this box if you want your FactChecker to be included in the leaderboard.", 
                key="input_include_in_leaderboard", 
                on_change=update_include_in_leaderboard)

    if st.button("Evaluate FactChecker"):
        # Display a success message
        st.success("User information saved successfully.")

        # Display a waiting message
        with st.status("Evaluating factuality of the FactChecker...", expanded=True) as status:
            result = fc_evaluator.evaluate(input_path=uploaded_data, eval_type="claims")
            status.update(label="FactChecker evaluated...", state="complete", expanded=False)

        # Display the evaluation report
        st.write("### Evaluation report:")
        
        col1, col2 = st.columns(2, gap="large")
        with col1:
            # Create the heatmap
            classes = ['True', 'False']
            fig = plt.figure()
            sns.heatmap(fc_evaluator.confusion_matrix, annot=True, fmt="d", cmap="Blues", xticklabels=classes, yticklabels=classes)
            plt.ylabel('Actual Class')
            plt.xlabel('Predicted Class')
            st.pyplot(fig)
        with col2:
            # Display the metrics
            accuracy = fc_evaluator.results["True_as_positive"]["accuracy"]
            if accuracy > 0.75 and accuracy <= 1:
                # Green background
                metric_card(label="Accuracy", value=f"{accuracy:.2%}", background_color="#D4EDDA", border_left_color="#28A745")
            elif accuracy > 0.25 and accuracy <= 0.75:
                # Yellow background
                metric_card(label="Accuracy", value=f"{accuracy:.2%}", background_color="#FFF3CD", border_left_color="#FFC107")
            else:
                # Red background
                metric_card(label="Accuracy", value=f"{accuracy:.2%}", background_color="#F8D7DA", border_left_color="#DC3545")
                
            sub_col1, sub_col2, sub_col3 = st.columns(3)
            with sub_col1:  
                metric_card(label="Total Time", value=fc_evaluator.results["total_time"])
            with sub_col2:
                metric_card(label="Total Cost", value=fc_evaluator.results["total_cost"])
            with sub_col3:
                metric_card(label="Number of Samples", value=fc_evaluator.results["num_samples"])

            st.text("Report:\n" + fc_evaluator.classification_report)