M3L / utils /init_utils.py
harshm121's picture
Working demo
d4ebf73
#!/usr/bin/env python3
# encoding: utf-8
# @Time : 2018/9/28 下午12:13
# @Author : yuchangqian
# @Contact : [email protected]
# @File : init_func.py.py
import math
import warnings
import torch
import torch.nn as nn
from utils.seg_opr.conv_2_5d import Conv2_5D_depth, Conv2_5D_disp
def __init_weight(feature, conv_init, norm_layer, bn_eps, bn_momentum,
**kwargs):
for name, m in feature.named_modules():
if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
conv_init(m.weight, **kwargs)
elif isinstance(m, Conv2_5D_depth):
conv_init(m.weight_0, **kwargs)
conv_init(m.weight_1, **kwargs)
conv_init(m.weight_2, **kwargs)
elif isinstance(m, Conv2_5D_disp):
conv_init(m.weight_0, **kwargs)
conv_init(m.weight_1, **kwargs)
conv_init(m.weight_2, **kwargs)
elif isinstance(m, norm_layer):
m.eps = bn_eps
m.momentum = bn_momentum
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def init_weight(module_list, conv_init, norm_layer, bn_eps, bn_momentum,
**kwargs):
if isinstance(module_list, list):
for feature in module_list:
__init_weight(feature, conv_init, norm_layer, bn_eps, bn_momentum,
**kwargs)
else:
__init_weight(module_list, conv_init, norm_layer, bn_eps, bn_momentum,
**kwargs)
def group_weight(weight_group, module, norm_layer, lr):
group_decay = []
group_no_decay = []
for m in module.modules():
if isinstance(m, nn.Linear):
group_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
elif isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.ConvTranspose2d, nn.ConvTranspose3d)):
group_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
elif isinstance(m, Conv2_5D_depth):
group_decay.append(m.weight_0)
group_decay.append(m.weight_1)
group_decay.append(m.weight_2)
if m.bias is not None:
group_no_decay.append(m.bias)
elif isinstance(m, Conv2_5D_disp):
group_decay.append(m.weight_0)
group_decay.append(m.weight_1)
group_decay.append(m.weight_2)
if m.bias is not None:
group_no_decay.append(m.bias)
elif isinstance(m, norm_layer) or isinstance(m, nn.BatchNorm1d) or isinstance(m, nn.BatchNorm2d) \
or isinstance(m, nn.BatchNorm3d) or isinstance(m, nn.GroupNorm):
if m.weight is not None:
group_no_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
elif isinstance(m, nn.Parameter):
group_decay.append(m)
elif isinstance(m, nn.Embedding):
group_decay.append(m)
# else:
# print(m, norm_layer)
# print(module.modules)
# print( len(list(module.parameters())) , 'HHHHHHHHHHHHHHHHH', len(group_decay) + len(
# group_no_decay))
assert len(list(module.parameters())) == len(group_decay) + len(
group_no_decay)
weight_group.append(dict(params=group_decay, lr=lr))
weight_group.append(dict(params=group_no_decay, weight_decay=.0, lr=lr))
return weight_group
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)