#!/usr/bin/env python3 # encoding: utf-8 # @Time : 2018/9/28 下午12:13 # @Author : yuchangqian # @Contact : changqian_yu@163.com # @File : init_func.py.py import math import warnings import torch import torch.nn as nn from utils.seg_opr.conv_2_5d import Conv2_5D_depth, Conv2_5D_disp def __init_weight(feature, conv_init, norm_layer, bn_eps, bn_momentum, **kwargs): for name, m in feature.named_modules(): if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): conv_init(m.weight, **kwargs) elif isinstance(m, Conv2_5D_depth): conv_init(m.weight_0, **kwargs) conv_init(m.weight_1, **kwargs) conv_init(m.weight_2, **kwargs) elif isinstance(m, Conv2_5D_disp): conv_init(m.weight_0, **kwargs) conv_init(m.weight_1, **kwargs) conv_init(m.weight_2, **kwargs) elif isinstance(m, norm_layer): m.eps = bn_eps m.momentum = bn_momentum nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def init_weight(module_list, conv_init, norm_layer, bn_eps, bn_momentum, **kwargs): if isinstance(module_list, list): for feature in module_list: __init_weight(feature, conv_init, norm_layer, bn_eps, bn_momentum, **kwargs) else: __init_weight(module_list, conv_init, norm_layer, bn_eps, bn_momentum, **kwargs) def group_weight(weight_group, module, norm_layer, lr): group_decay = [] group_no_decay = [] for m in module.modules(): if isinstance(m, nn.Linear): group_decay.append(m.weight) if m.bias is not None: group_no_decay.append(m.bias) elif isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.ConvTranspose2d, nn.ConvTranspose3d)): group_decay.append(m.weight) if m.bias is not None: group_no_decay.append(m.bias) elif isinstance(m, Conv2_5D_depth): group_decay.append(m.weight_0) group_decay.append(m.weight_1) group_decay.append(m.weight_2) if m.bias is not None: group_no_decay.append(m.bias) elif isinstance(m, Conv2_5D_disp): group_decay.append(m.weight_0) group_decay.append(m.weight_1) group_decay.append(m.weight_2) if m.bias is not None: group_no_decay.append(m.bias) elif isinstance(m, norm_layer) or isinstance(m, nn.BatchNorm1d) or isinstance(m, nn.BatchNorm2d) \ or isinstance(m, nn.BatchNorm3d) or isinstance(m, nn.GroupNorm): if m.weight is not None: group_no_decay.append(m.weight) if m.bias is not None: group_no_decay.append(m.bias) elif isinstance(m, nn.Parameter): group_decay.append(m) elif isinstance(m, nn.Embedding): group_decay.append(m) # else: # print(m, norm_layer) # print(module.modules) # print( len(list(module.parameters())) , 'HHHHHHHHHHHHHHHHH', len(group_decay) + len( # group_no_decay)) assert len(list(module.parameters())) == len(group_decay) + len( group_no_decay) weight_group.append(dict(params=group_decay, lr=lr)) weight_group.append(dict(params=group_no_decay, weight_decay=.0, lr=lr)) return weight_group def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b)