|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from functools import partial |
|
|
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
from .modules import ModuleParallel, LayerNormParallel, num_parallel, TokenExchange |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = ModuleParallel(nn.Linear(in_features, hidden_features)) |
|
self.dwconv = DWConv(hidden_features) |
|
self.act = ModuleParallel(act_layer()) |
|
self.fc2 = ModuleParallel(nn.Linear(hidden_features, out_features)) |
|
self.drop = ModuleParallel(nn.Dropout(drop)) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def forward(self, x, H, W): |
|
x = self.fc1(x) |
|
x = [self.dwconv(x[0], H, W), self.dwconv(x[1], H, W)] |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1): |
|
super().__init__() |
|
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." |
|
|
|
self.dim = dim |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.q = ModuleParallel(nn.Linear(dim, dim, bias=qkv_bias)) |
|
self.kv = ModuleParallel(nn.Linear(dim, dim * 2, bias=qkv_bias)) |
|
self.attn_drop = ModuleParallel(nn.Dropout(attn_drop)) |
|
self.proj = ModuleParallel(nn.Linear(dim, dim)) |
|
self.proj_drop = ModuleParallel(nn.Dropout(proj_drop)) |
|
|
|
self.sr_ratio = sr_ratio |
|
if sr_ratio > 1: |
|
self.sr = ModuleParallel(nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)) |
|
self.norm = LayerNormParallel(dim) |
|
self.exchange = TokenExchange() |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def forward(self, x, H, W, mask): |
|
B, N, C = x[0].shape |
|
q = self.q(x) |
|
q = [q_.reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) for q_ in q] |
|
|
|
if self.sr_ratio > 1: |
|
x = [x_.permute(0, 2, 1).reshape(B, C, H, W) for x_ in x] |
|
x = self.sr(x) |
|
x = [x_.reshape(B, C, -1).permute(0, 2, 1) for x_ in x] |
|
x = self.norm(x) |
|
kv = self.kv(x) |
|
kv = [kv_.reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) for kv_ in kv] |
|
else: |
|
kv = self.kv(x) |
|
kv = [kv_.reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) for kv_ in kv] |
|
k, v = [kv[0][0], kv[1][0]], [kv[0][1], kv[1][1]] |
|
|
|
attn = [(q_ @ k_.transpose(-2, -1)) * self.scale for (q_, k_) in zip(q, k)] |
|
attn = [attn_.softmax(dim=-1) for attn_ in attn] |
|
attn = self.attn_drop(attn) |
|
|
|
x = [(attn_ @ v_).transpose(1, 2).reshape(B, N, C) for (attn_, v_) in zip(attn, v)] |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
|
|
if mask is not None: |
|
x = [x_ * mask_.unsqueeze(2) for (x_, mask_) in zip(x, mask)] |
|
x = self.exchange(x, mask, mask_threshold=0.02) |
|
|
|
return x |
|
|
|
|
|
class PredictorLG(nn.Module): |
|
""" Image to Patch Embedding from DydamicVit |
|
""" |
|
def __init__(self, embed_dim=384): |
|
super().__init__() |
|
self.score_nets = nn.ModuleList([nn.Sequential( |
|
nn.LayerNorm(embed_dim), |
|
nn.Linear(embed_dim, embed_dim), |
|
nn.GELU(), |
|
nn.Linear(embed_dim, embed_dim // 2), |
|
nn.GELU(), |
|
nn.Linear(embed_dim // 2, embed_dim // 4), |
|
nn.GELU(), |
|
nn.Linear(embed_dim // 4, 2), |
|
nn.LogSoftmax(dim=-1) |
|
) for _ in range(num_parallel)]) |
|
|
|
def forward(self, x): |
|
x = [self.score_nets[i](x[i]) for i in range(num_parallel)] |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., act_layer=nn.GELU, norm_layer=LayerNormParallel, sr_ratio=1): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
|
|
|
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio) |
|
|
|
self.drop_path = ModuleParallel(DropPath(drop_path)) if drop_path > 0. else ModuleParallel(nn.Identity()) |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def forward(self, x, H, W, mask=None): |
|
B = x[0].shape[0] |
|
|
|
|
|
|
|
|
|
|
|
f = self.drop_path(self.attn(self.norm1(x), H, W, mask)) |
|
x = [x_ + f_ for (x_, f_) in zip (x, f)] |
|
f = self.drop_path(self.mlp(self.norm2(x), H, W)) |
|
x = [x_ + f_ for (x_, f_) in zip (x, f)] |
|
|
|
|
|
return x |
|
|
|
|
|
class OverlapPatchEmbedAndMask(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
|
|
def __init__(self, masking_ratio = 0.25, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
|
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] |
|
self.num_patches = self.H * self.W |
|
self.proj = ModuleParallel(nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride, |
|
padding=(patch_size[0] // 2, patch_size[1] // 2))) |
|
self.norm = LayerNormParallel(embed_dim) |
|
self.masking_ratio = masking_ratio |
|
self.embed_dim = embed_dim |
|
self.mask_token = nn.parameter.Parameter(torch.randn(self.embed_dim), requires_grad = True) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def mask_with_learnt_mask(self, x, masking_branch): |
|
|
|
|
|
|
|
_, N, L, D = x.shape |
|
N = torch.sum( torch.tensor(masking_branch) != -1) |
|
indicies = torch.FloatTensor(N, L).uniform_() <= self.masking_ratio |
|
|
|
masking_branch = torch.tensor(masking_branch).to(x.device) |
|
index = torch.stack([torch.tensor(masking_branch == 0), torch.tensor(masking_branch == 1)]).to(x.device) |
|
xtemp = x[index] |
|
xtemp[indicies] = self.mask_token |
|
x[index] = xtemp |
|
return x |
|
|
|
|
|
def forward(self, x, mask, masking_branch = None, range_batches_to_mask = None): |
|
sum_mask = torch.sum(self.mask_token) |
|
x = self.proj(x) |
|
_, _, H, W = x[0].shape |
|
x = [x_.flatten(2).transpose(1, 2) for x_ in x] |
|
x = self.norm(x) |
|
if mask: |
|
assert masking_branch is not None and range_batches_to_mask is not None, "expected the range of batches to mask to not mask the labeled images" |
|
xstacked = torch.stack(x) |
|
xstacked[:, range_batches_to_mask[0]:range_batches_to_mask[1]] = self.mask_with_learnt_mask(xstacked[:, range_batches_to_mask[0]:range_batches_to_mask[1]], masking_branch) |
|
x = [xstacked[i] for i in range(xstacked.shape[0])] |
|
else: |
|
x[0] = x[0] + 0*sum_mask |
|
return x, H, W |
|
|
|
|
|
class MixVisionTransformer(nn.Module): |
|
def __init__(self, masking_ratio, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512], |
|
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0., |
|
attn_drop_rate=0., drop_path_rate=0., norm_layer=LayerNormParallel, |
|
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.depths = depths |
|
self.embed_dims = embed_dims |
|
|
|
|
|
self.patch_embed1 = OverlapPatchEmbedAndMask(masking_ratio = masking_ratio, img_size=img_size, patch_size=7, stride=4, in_chans=in_chans, |
|
embed_dim=embed_dims[0]) |
|
self.patch_embed2 = OverlapPatchEmbedAndMask(masking_ratio = masking_ratio, img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0], |
|
embed_dim=embed_dims[1]) |
|
self.patch_embed3 = OverlapPatchEmbedAndMask(masking_ratio = masking_ratio, img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1], |
|
embed_dim=embed_dims[2]) |
|
self.patch_embed4 = OverlapPatchEmbedAndMask(masking_ratio = masking_ratio, img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2], |
|
embed_dim=embed_dims[3]) |
|
|
|
predictor_list = [PredictorLG(embed_dims[i]) for i in range(len(depths))] |
|
self.score_predictor = nn.ModuleList(predictor_list) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
cur = 0 |
|
self.block1 = nn.ModuleList([Block( |
|
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, |
|
sr_ratio=sr_ratios[0]) |
|
for i in range(depths[0])]) |
|
self.norm1 = norm_layer(embed_dims[0]) |
|
|
|
cur += depths[0] |
|
self.block2 = nn.ModuleList([Block( |
|
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, |
|
sr_ratio=sr_ratios[1]) |
|
for i in range(depths[1])]) |
|
self.norm2 = norm_layer(embed_dims[1]) |
|
|
|
cur += depths[1] |
|
self.block3 = nn.ModuleList([Block( |
|
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, |
|
sr_ratio=sr_ratios[2]) |
|
for i in range(depths[2])]) |
|
self.norm3 = norm_layer(embed_dims[2]) |
|
|
|
cur += depths[2] |
|
self.block4 = nn.ModuleList([Block( |
|
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, |
|
sr_ratio=sr_ratios[3]) |
|
for i in range(depths[3])]) |
|
self.norm4 = norm_layer(embed_dims[3]) |
|
|
|
|
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
''' |
|
def init_weights(self, pretrained=None): |
|
if isinstance(pretrained, str): |
|
logger = get_root_logger() |
|
load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger) |
|
''' |
|
def reset_drop_path(self, drop_path_rate): |
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))] |
|
cur = 0 |
|
for i in range(self.depths[0]): |
|
self.block1[i].drop_path.drop_prob = dpr[cur + i] |
|
|
|
cur += self.depths[0] |
|
for i in range(self.depths[1]): |
|
self.block2[i].drop_path.drop_prob = dpr[cur + i] |
|
|
|
cur += self.depths[1] |
|
for i in range(self.depths[2]): |
|
self.block3[i].drop_path.drop_prob = dpr[cur + i] |
|
|
|
cur += self.depths[2] |
|
for i in range(self.depths[3]): |
|
self.block4[i].drop_path.drop_prob = dpr[cur + i] |
|
|
|
def freeze_patch_emb(self): |
|
self.patch_embed1.requires_grad = False |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} |
|
|
|
def get_classifier(self): |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes, global_pool=''): |
|
self.num_classes = num_classes |
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward_features(self, x, mask, masking_branch, range_batches_to_mask): |
|
B = x[0].shape[0] |
|
outs0, outs1 = [], [] |
|
masks = [] |
|
|
|
|
|
|
|
x, H, W = self.patch_embed1(x, mask = mask, masking_branch = masking_branch, range_batches_to_mask = range_batches_to_mask) |
|
for i, blk in enumerate(self.block1): |
|
score = self.score_predictor[0](x) |
|
mask = [F.softmax(score_.reshape(B, -1, 2), dim=2)[:, :, 0] for score_ in score] |
|
masks.append(mask) |
|
x = blk(x, H, W, mask) |
|
x = self.norm1(x) |
|
x = [x_.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for x_ in x] |
|
outs0.append(x[0]) |
|
outs1.append(x[1]) |
|
|
|
|
|
x, H, W = self.patch_embed2(x, mask = False) |
|
for i, blk in enumerate(self.block2): |
|
score = self.score_predictor[1](x) |
|
mask = [F.softmax(score_.reshape(B, -1, 2), dim=2)[:, :, 0] for score_ in score] |
|
masks.append(mask) |
|
x = blk(x, H, W, mask) |
|
x = self.norm2(x) |
|
x = [x_.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for x_ in x] |
|
outs0.append(x[0]) |
|
outs1.append(x[1]) |
|
|
|
|
|
x, H, W = self.patch_embed3(x, mask = False) |
|
for i, blk in enumerate(self.block3): |
|
score = self.score_predictor[2](x) |
|
mask = [F.softmax(score_.reshape(B, -1, 2), dim=2)[:, :, 0] for score_ in score] |
|
masks.append(mask) |
|
x = blk(x, H, W, mask) |
|
x = self.norm3(x) |
|
x = [x_.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for x_ in x] |
|
outs0.append(x[0]) |
|
outs1.append(x[1]) |
|
|
|
|
|
x, H, W = self.patch_embed4(x, mask = False) |
|
for i, blk in enumerate(self.block4): |
|
score = self.score_predictor[3](x) |
|
mask = [F.softmax(score_.reshape(B, -1, 2), dim=2)[:, :, 0] for score_ in score] |
|
masks.append(mask) |
|
x = blk(x, H, W, mask) |
|
x = self.norm4(x) |
|
x = [x_.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for x_ in x] |
|
outs0.append(x[0]) |
|
outs1.append(x[1]) |
|
|
|
return [outs0, outs1], masks |
|
|
|
def forward(self, x, mask, masking_branch = None, range_batches_to_mask = None): |
|
x, masks = self.forward_features(x, mask, masking_branch, range_batches_to_mask) |
|
return x, masks |
|
|
|
|
|
class DWConv(nn.Module): |
|
def __init__(self, dim=768): |
|
super(DWConv, self).__init__() |
|
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) |
|
|
|
def forward(self, x, H, W): |
|
B, N, C = x.shape |
|
x = x.transpose(1, 2).contiguous().view(B, C, H, W) |
|
x = self.dwconv(x) |
|
x = x.flatten(2).transpose(1, 2).contiguous() |
|
|
|
return x |
|
|
|
class mit_b0(MixVisionTransformer): |
|
def __init__(self, masking_ratio, **kwargs): |
|
super(mit_b0, self).__init__(masking_ratio = masking_ratio, |
|
patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], |
|
qkv_bias=True, norm_layer=LayerNormParallel, depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, drop_path_rate=0.1) |
|
|
|
|
|
class mit_b1(MixVisionTransformer): |
|
def __init__(self, masking_ratio, **kwargs): |
|
super(mit_b1, self).__init__(masking_ratio = masking_ratio, |
|
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], |
|
qkv_bias=True, norm_layer=LayerNormParallel, depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, drop_path_rate=0.1) |
|
|
|
|
|
class mit_b2(MixVisionTransformer): |
|
def __init__(self, masking_ratio, **kwargs): |
|
super(mit_b2, self).__init__(masking_ratio = masking_ratio, |
|
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], |
|
qkv_bias=True, norm_layer=LayerNormParallel, depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, drop_path_rate=0.1) |
|
|
|
|
|
class mit_b3(MixVisionTransformer): |
|
def __init__(self, masking_ratio, **kwargs): |
|
super(mit_b3, self).__init__(masking_ratio = masking_ratio, |
|
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], |
|
qkv_bias=True, norm_layer=LayerNormParallel, depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, drop_path_rate=0.1) |
|
|
|
|
|
class mit_b4(MixVisionTransformer): |
|
def __init__(self, masking_ratio, **kwargs): |
|
super(mit_b4, self).__init__(masking_ratio = masking_ratio, |
|
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], |
|
qkv_bias=True, norm_layer=LayerNormParallel, depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, drop_path_rate=0.1) |
|
|
|
|
|
class mit_b5(MixVisionTransformer): |
|
def __init__(self, masking_ratio, **kwargs): |
|
super(mit_b5, self).__init__(masking_ratio = masking_ratio, |
|
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], |
|
qkv_bias=True, norm_layer=LayerNormParallel, depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, drop_path_rate=0.1) |