File size: 22,646 Bytes
d4ebf73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
# 2022.06.08-Changed for implementation of TokenFusion
# Huawei Technologies Co., Ltd. <[email protected]>
# ---------------------------------------------------------------
# Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# ---------------------------------------------------------------
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from .modules import ModuleParallel, LayerNormParallel, num_parallel, TokenExchange
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = ModuleParallel(nn.Linear(in_features, hidden_features))
self.dwconv = DWConv(hidden_features)
self.act = ModuleParallel(act_layer())
self.fc2 = ModuleParallel(nn.Linear(hidden_features, out_features))
self.drop = ModuleParallel(nn.Dropout(drop))
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x, H, W):
x = self.fc1(x)
x = [self.dwconv(x[0], H, W), self.dwconv(x[1], H, W)]
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.q = ModuleParallel(nn.Linear(dim, dim, bias=qkv_bias))
self.kv = ModuleParallel(nn.Linear(dim, dim * 2, bias=qkv_bias))
self.attn_drop = ModuleParallel(nn.Dropout(attn_drop))
self.proj = ModuleParallel(nn.Linear(dim, dim))
self.proj_drop = ModuleParallel(nn.Dropout(proj_drop))
self.sr_ratio = sr_ratio
if sr_ratio > 1:
self.sr = ModuleParallel(nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio))
self.norm = LayerNormParallel(dim)
self.exchange = TokenExchange()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x, H, W, mask):
B, N, C = x[0].shape
q = self.q(x)
q = [q_.reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) for q_ in q]
if self.sr_ratio > 1:
x = [x_.permute(0, 2, 1).reshape(B, C, H, W) for x_ in x]
x = self.sr(x)
x = [x_.reshape(B, C, -1).permute(0, 2, 1) for x_ in x]
x = self.norm(x)
kv = self.kv(x)
kv = [kv_.reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) for kv_ in kv]
else:
kv = self.kv(x)
kv = [kv_.reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) for kv_ in kv]
k, v = [kv[0][0], kv[1][0]], [kv[0][1], kv[1][1]]
attn = [(q_ @ k_.transpose(-2, -1)) * self.scale for (q_, k_) in zip(q, k)]
attn = [attn_.softmax(dim=-1) for attn_ in attn]
attn = self.attn_drop(attn)
x = [(attn_ @ v_).transpose(1, 2).reshape(B, N, C) for (attn_, v_) in zip(attn, v)]
x = self.proj(x)
x = self.proj_drop(x)
if mask is not None:
x = [x_ * mask_.unsqueeze(2) for (x_, mask_) in zip(x, mask)]
x = self.exchange(x, mask, mask_threshold=0.02)
return x
class PredictorLG(nn.Module):
""" Image to Patch Embedding from DydamicVit
"""
def __init__(self, embed_dim=384):
super().__init__()
self.score_nets = nn.ModuleList([nn.Sequential(
nn.LayerNorm(embed_dim),
nn.Linear(embed_dim, embed_dim),
nn.GELU(),
nn.Linear(embed_dim, embed_dim // 2),
nn.GELU(),
nn.Linear(embed_dim // 2, embed_dim // 4),
nn.GELU(),
nn.Linear(embed_dim // 4, 2),
nn.LogSoftmax(dim=-1)
) for _ in range(num_parallel)])
def forward(self, x):
x = [self.score_nets[i](x[i]) for i in range(num_parallel)]
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=LayerNormParallel, sr_ratio=1):
super().__init__()
self.norm1 = norm_layer(dim)
# self.score = PredictorLG(dim)
self.attn = Attention(
dim,
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = ModuleParallel(DropPath(drop_path)) if drop_path > 0. else ModuleParallel(nn.Identity())
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
# self.exchange = TokenExchange()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x, H, W, mask=None):
B = x[0].shape[0]
# norm1 = self.norm1(x)
# score = self.score(norm1)
# mask = [F.gumbel_softmax(score_.reshape(B, -1, 2), hard=True)[:, :, 0] for score_ in score]
# if mask is not None:
# norm = [norm_ * mask_.unsqueeze(2) for (norm_, mask_) in zip(norm, mask)]
f = self.drop_path(self.attn(self.norm1(x), H, W, mask))
x = [x_ + f_ for (x_, f_) in zip (x, f)]
f = self.drop_path(self.mlp(self.norm2(x), H, W))
x = [x_ + f_ for (x_, f_) in zip (x, f)]
# if mask is not None:
# x = self.exchange(x, mask, mask_threshold=0.02)
return x
class OverlapPatchEmbedAndMask(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, masking_ratio = 0.25, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
self.num_patches = self.H * self.W
self.proj = ModuleParallel(nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
padding=(patch_size[0] // 2, patch_size[1] // 2)))
self.norm = LayerNormParallel(embed_dim)
self.masking_ratio = masking_ratio
self.embed_dim = embed_dim
self.mask_token = nn.parameter.Parameter(torch.randn(self.embed_dim), requires_grad = True)#None #When training in the SupOnly loop, unused params raise error in DDP. Hence instantiating mask_token only when masked training begins
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def mask_with_learnt_mask(self, x, masking_branch):
# if self.mask_token is None: #When training in the SupOnly loop, unused params raise error in DDP. Hence instantiating mask_token only when masked training begins
# self.mask_token = nn.parameter.Parameter(torch.randn(self.embed_dim, device=x.device), requires_grad = True)
# print(self.mask_token[:10], x.device, "token")
_, N, L, D = x.shape # modality, batch, length, dim
N = torch.sum( torch.tensor(masking_branch) != -1)
indicies = torch.FloatTensor(N, L).uniform_() <= self.masking_ratio
# x[indicies] = self.mask_token
masking_branch = torch.tensor(masking_branch).to(x.device)
index = torch.stack([torch.tensor(masking_branch == 0), torch.tensor(masking_branch == 1)]).to(x.device)
xtemp = x[index]
xtemp[indicies] = self.mask_token
x[index] = xtemp
return x
def forward(self, x, mask, masking_branch = None, range_batches_to_mask = None):
sum_mask = torch.sum(self.mask_token)
x = self.proj(x)
_, _, H, W = x[0].shape
x = [x_.flatten(2).transpose(1, 2) for x_ in x]
x = self.norm(x)
if mask:
assert masking_branch is not None and range_batches_to_mask is not None, "expected the range of batches to mask to not mask the labeled images"
xstacked = torch.stack(x)
xstacked[:, range_batches_to_mask[0]:range_batches_to_mask[1]] = self.mask_with_learnt_mask(xstacked[:, range_batches_to_mask[0]:range_batches_to_mask[1]], masking_branch)
x = [xstacked[i] for i in range(xstacked.shape[0])]
else:
x[0] = x[0] + 0*sum_mask #So that when training with SupOnly (and not using any masking), DDP doesn't raise an error that you have unused parameters.
return x, H, W
class MixVisionTransformer(nn.Module):
def __init__(self, masking_ratio, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
attn_drop_rate=0., drop_path_rate=0., norm_layer=LayerNormParallel,
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
super().__init__()
self.num_classes = num_classes
self.depths = depths
self.embed_dims = embed_dims
# patch_embed
self.patch_embed1 = OverlapPatchEmbedAndMask(masking_ratio = masking_ratio, img_size=img_size, patch_size=7, stride=4, in_chans=in_chans,
embed_dim=embed_dims[0])
self.patch_embed2 = OverlapPatchEmbedAndMask(masking_ratio = masking_ratio, img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0],
embed_dim=embed_dims[1])
self.patch_embed3 = OverlapPatchEmbedAndMask(masking_ratio = masking_ratio, img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1],
embed_dim=embed_dims[2])
self.patch_embed4 = OverlapPatchEmbedAndMask(masking_ratio = masking_ratio, img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2],
embed_dim=embed_dims[3])
predictor_list = [PredictorLG(embed_dims[i]) for i in range(len(depths))]
self.score_predictor = nn.ModuleList(predictor_list)
# transformer encoder
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
cur = 0
self.block1 = nn.ModuleList([Block(
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
sr_ratio=sr_ratios[0])
for i in range(depths[0])])
self.norm1 = norm_layer(embed_dims[0])
cur += depths[0]
self.block2 = nn.ModuleList([Block(
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
sr_ratio=sr_ratios[1])
for i in range(depths[1])])
self.norm2 = norm_layer(embed_dims[1])
cur += depths[1]
self.block3 = nn.ModuleList([Block(
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
sr_ratio=sr_ratios[2])
for i in range(depths[2])])
self.norm3 = norm_layer(embed_dims[2])
cur += depths[2]
self.block4 = nn.ModuleList([Block(
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
sr_ratio=sr_ratios[3])
for i in range(depths[3])])
self.norm4 = norm_layer(embed_dims[3])
# classification head
# self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
'''
def init_weights(self, pretrained=None):
if isinstance(pretrained, str):
logger = get_root_logger()
load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
'''
def reset_drop_path(self, drop_path_rate):
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
cur = 0
for i in range(self.depths[0]):
self.block1[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[0]
for i in range(self.depths[1]):
self.block2[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[1]
for i in range(self.depths[2]):
self.block3[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[2]
for i in range(self.depths[3]):
self.block4[i].drop_path.drop_prob = dpr[cur + i]
def freeze_patch_emb(self):
self.patch_embed1.requires_grad = False
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x, mask, masking_branch, range_batches_to_mask):
B = x[0].shape[0]
outs0, outs1 = [], []
masks = []
# stage 1
# x, H, W = self.patch_embed1(x)
x, H, W = self.patch_embed1(x, mask = mask, masking_branch = masking_branch, range_batches_to_mask = range_batches_to_mask)
for i, blk in enumerate(self.block1):
score = self.score_predictor[0](x)
mask = [F.softmax(score_.reshape(B, -1, 2), dim=2)[:, :, 0] for score_ in score] # mask_: [B, N]
masks.append(mask)
x = blk(x, H, W, mask)
x = self.norm1(x)
x = [x_.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for x_ in x]
outs0.append(x[0])
outs1.append(x[1])
# stage 2
x, H, W = self.patch_embed2(x, mask = False)
for i, blk in enumerate(self.block2):
score = self.score_predictor[1](x)
mask = [F.softmax(score_.reshape(B, -1, 2), dim=2)[:, :, 0] for score_ in score] # mask_: [B, N]
masks.append(mask)
x = blk(x, H, W, mask)
x = self.norm2(x)
x = [x_.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for x_ in x]
outs0.append(x[0])
outs1.append(x[1])
# stage 3
x, H, W = self.patch_embed3(x, mask = False)
for i, blk in enumerate(self.block3):
score = self.score_predictor[2](x)
mask = [F.softmax(score_.reshape(B, -1, 2), dim=2)[:, :, 0] for score_ in score] # mask_: [B, N]
masks.append(mask)
x = blk(x, H, W, mask)
x = self.norm3(x)
x = [x_.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for x_ in x]
outs0.append(x[0])
outs1.append(x[1])
# stage 4
x, H, W = self.patch_embed4(x, mask = False)
for i, blk in enumerate(self.block4):
score = self.score_predictor[3](x)
mask = [F.softmax(score_.reshape(B, -1, 2), dim=2)[:, :, 0] for score_ in score] # mask_: [B, N]
masks.append(mask)
x = blk(x, H, W, mask)
x = self.norm4(x)
x = [x_.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for x_ in x]
outs0.append(x[0])
outs1.append(x[1])
return [outs0, outs1], masks
def forward(self, x, mask, masking_branch = None, range_batches_to_mask = None):
x, masks = self.forward_features(x, mask, masking_branch, range_batches_to_mask)
return x, masks
class DWConv(nn.Module):
def __init__(self, dim=768):
super(DWConv, self).__init__()
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
def forward(self, x, H, W):
B, N, C = x.shape
x = x.transpose(1, 2).contiguous().view(B, C, H, W)
x = self.dwconv(x)
x = x.flatten(2).transpose(1, 2).contiguous()
return x
class mit_b0(MixVisionTransformer):
def __init__(self, masking_ratio, **kwargs):
super(mit_b0, self).__init__(masking_ratio = masking_ratio,
patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
qkv_bias=True, norm_layer=LayerNormParallel, depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
drop_rate=0.0, drop_path_rate=0.1)
class mit_b1(MixVisionTransformer):
def __init__(self, masking_ratio, **kwargs):
super(mit_b1, self).__init__(masking_ratio = masking_ratio,
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
qkv_bias=True, norm_layer=LayerNormParallel, depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
drop_rate=0.0, drop_path_rate=0.1)
class mit_b2(MixVisionTransformer):
def __init__(self, masking_ratio, **kwargs):
super(mit_b2, self).__init__(masking_ratio = masking_ratio,
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
qkv_bias=True, norm_layer=LayerNormParallel, depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
drop_rate=0.0, drop_path_rate=0.1)
class mit_b3(MixVisionTransformer):
def __init__(self, masking_ratio, **kwargs):
super(mit_b3, self).__init__(masking_ratio = masking_ratio,
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
qkv_bias=True, norm_layer=LayerNormParallel, depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
drop_rate=0.0, drop_path_rate=0.1)
class mit_b4(MixVisionTransformer):
def __init__(self, masking_ratio, **kwargs):
super(mit_b4, self).__init__(masking_ratio = masking_ratio,
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
qkv_bias=True, norm_layer=LayerNormParallel, depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
drop_rate=0.0, drop_path_rate=0.1)
class mit_b5(MixVisionTransformer):
def __init__(self, masking_ratio, **kwargs):
super(mit_b5, self).__init__(masking_ratio = masking_ratio,
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
qkv_bias=True, norm_layer=LayerNormParallel, depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
drop_rate=0.0, drop_path_rate=0.1) |