Spaces:
Paused
Paused
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Callable, Dict, List, Optional, Union | |
import numpy as np | |
import torch | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from ...schedulers import DDPMWuerstchenScheduler | |
from ...utils import deprecate, logging, replace_example_docstring | |
from ...utils.torch_utils import randn_tensor | |
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
from .modeling_paella_vq_model import PaellaVQModel | |
from .modeling_wuerstchen_diffnext import WuerstchenDiffNeXt | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import WuerstchenPriorPipeline, WuerstchenDecoderPipeline | |
>>> prior_pipe = WuerstchenPriorPipeline.from_pretrained( | |
... "warp-ai/wuerstchen-prior", torch_dtype=torch.float16 | |
... ).to("cuda") | |
>>> gen_pipe = WuerstchenDecoderPipeline.from_pretrain("warp-ai/wuerstchen", torch_dtype=torch.float16).to( | |
... "cuda" | |
... ) | |
>>> prompt = "an image of a shiba inu, donning a spacesuit and helmet" | |
>>> prior_output = pipe(prompt) | |
>>> images = gen_pipe(prior_output.image_embeddings, prompt=prompt) | |
``` | |
""" | |
class WuerstchenDecoderPipeline(DiffusionPipeline): | |
""" | |
Pipeline for generating images from the Wuerstchen model. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
tokenizer (`CLIPTokenizer`): | |
The CLIP tokenizer. | |
text_encoder (`CLIPTextModel`): | |
The CLIP text encoder. | |
decoder ([`WuerstchenDiffNeXt`]): | |
The WuerstchenDiffNeXt unet decoder. | |
vqgan ([`PaellaVQModel`]): | |
The VQGAN model. | |
scheduler ([`DDPMWuerstchenScheduler`]): | |
A scheduler to be used in combination with `prior` to generate image embedding. | |
latent_dim_scale (float, `optional`, defaults to 10.67): | |
Multiplier to determine the VQ latent space size from the image embeddings. If the image embeddings are | |
height=24 and width=24, the VQ latent shape needs to be height=int(24*10.67)=256 and | |
width=int(24*10.67)=256 in order to match the training conditions. | |
""" | |
model_cpu_offload_seq = "text_encoder->decoder->vqgan" | |
_callback_tensor_inputs = [ | |
"latents", | |
"text_encoder_hidden_states", | |
"negative_prompt_embeds", | |
"image_embeddings", | |
] | |
def __init__( | |
self, | |
tokenizer: CLIPTokenizer, | |
text_encoder: CLIPTextModel, | |
decoder: WuerstchenDiffNeXt, | |
scheduler: DDPMWuerstchenScheduler, | |
vqgan: PaellaVQModel, | |
latent_dim_scale: float = 10.67, | |
) -> None: | |
super().__init__() | |
self.register_modules( | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
decoder=decoder, | |
scheduler=scheduler, | |
vqgan=vqgan, | |
) | |
self.register_to_config(latent_dim_scale=latent_dim_scale) | |
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents | |
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
if latents.shape != shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
latents = latents * scheduler.init_noise_sigma | |
return latents | |
def encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
): | |
batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
# get prompt text embeddings | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
attention_mask = text_inputs.attention_mask | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] | |
attention_mask = attention_mask[:, : self.tokenizer.model_max_length] | |
text_encoder_output = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask.to(device)) | |
text_encoder_hidden_states = text_encoder_output.last_hidden_state | |
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
uncond_text_encoder_hidden_states = None | |
if do_classifier_free_guidance: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
negative_prompt_embeds_text_encoder_output = self.text_encoder( | |
uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device) | |
) | |
uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = uncond_text_encoder_hidden_states.shape[1] | |
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) | |
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( | |
batch_size * num_images_per_prompt, seq_len, -1 | |
) | |
# done duplicates | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
return text_encoder_hidden_states, uncond_text_encoder_hidden_states | |
def guidance_scale(self): | |
return self._guidance_scale | |
def do_classifier_free_guidance(self): | |
return self._guidance_scale > 1 | |
def num_timesteps(self): | |
return self._num_timesteps | |
def __call__( | |
self, | |
image_embeddings: Union[torch.FloatTensor, List[torch.FloatTensor]], | |
prompt: Union[str, List[str]] = None, | |
num_inference_steps: int = 12, | |
timesteps: Optional[List[float]] = None, | |
guidance_scale: float = 0.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: int = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
**kwargs, | |
): | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
image_embedding (`torch.FloatTensor` or `List[torch.FloatTensor]`): | |
Image Embeddings either extracted from an image or generated by a Prior Model. | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
num_inference_steps (`int`, *optional*, defaults to 12): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` | |
timesteps are used. Must be in descending order. | |
guidance_scale (`float`, *optional*, defaults to 0.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting | |
`decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely | |
linked to the text `prompt`, usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `decoder_guidance_scale` is less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` | |
(`np.array`) or `"pt"` (`torch.Tensor`). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
Examples: | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple` [`~pipelines.ImagePipelineOutput`] if `return_dict` is True, | |
otherwise a `tuple`. When returning a tuple, the first element is a list with the generated image | |
embeddings. | |
""" | |
callback = kwargs.pop("callback", None) | |
callback_steps = kwargs.pop("callback_steps", None) | |
if callback is not None: | |
deprecate( | |
"callback", | |
"1.0.0", | |
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
if callback_steps is not None: | |
deprecate( | |
"callback_steps", | |
"1.0.0", | |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
# 0. Define commonly used variables | |
device = self._execution_device | |
dtype = self.decoder.dtype | |
self._guidance_scale = guidance_scale | |
# 1. Check inputs. Raise error if not correct | |
if not isinstance(prompt, list): | |
if isinstance(prompt, str): | |
prompt = [prompt] | |
else: | |
raise TypeError(f"'prompt' must be of type 'list' or 'str', but got {type(prompt)}.") | |
if self.do_classifier_free_guidance: | |
if negative_prompt is not None and not isinstance(negative_prompt, list): | |
if isinstance(negative_prompt, str): | |
negative_prompt = [negative_prompt] | |
else: | |
raise TypeError( | |
f"'negative_prompt' must be of type 'list' or 'str', but got {type(negative_prompt)}." | |
) | |
if isinstance(image_embeddings, list): | |
image_embeddings = torch.cat(image_embeddings, dim=0) | |
if isinstance(image_embeddings, np.ndarray): | |
image_embeddings = torch.Tensor(image_embeddings, device=device).to(dtype=dtype) | |
if not isinstance(image_embeddings, torch.Tensor): | |
raise TypeError( | |
f"'image_embeddings' must be of type 'torch.Tensor' or 'np.array', but got {type(image_embeddings)}." | |
) | |
if not isinstance(num_inference_steps, int): | |
raise TypeError( | |
f"'num_inference_steps' must be of type 'int', but got {type(num_inference_steps)}\ | |
In Case you want to provide explicit timesteps, please use the 'timesteps' argument." | |
) | |
# 2. Encode caption | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt, | |
device, | |
image_embeddings.size(0) * num_images_per_prompt, | |
self.do_classifier_free_guidance, | |
negative_prompt, | |
) | |
text_encoder_hidden_states = ( | |
torch.cat([prompt_embeds, negative_prompt_embeds]) if negative_prompt_embeds is not None else prompt_embeds | |
) | |
effnet = ( | |
torch.cat([image_embeddings, torch.zeros_like(image_embeddings)]) | |
if self.do_classifier_free_guidance | |
else image_embeddings | |
) | |
# 3. Determine latent shape of latents | |
latent_height = int(image_embeddings.size(2) * self.config.latent_dim_scale) | |
latent_width = int(image_embeddings.size(3) * self.config.latent_dim_scale) | |
latent_features_shape = (image_embeddings.size(0) * num_images_per_prompt, 4, latent_height, latent_width) | |
# 4. Prepare and set timesteps | |
if timesteps is not None: | |
self.scheduler.set_timesteps(timesteps=timesteps, device=device) | |
timesteps = self.scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latents | |
latents = self.prepare_latents(latent_features_shape, dtype, device, generator, latents, self.scheduler) | |
# 6. Run denoising loop | |
self._num_timesteps = len(timesteps[:-1]) | |
for i, t in enumerate(self.progress_bar(timesteps[:-1])): | |
ratio = t.expand(latents.size(0)).to(dtype) | |
# 7. Denoise latents | |
predicted_latents = self.decoder( | |
torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents, | |
r=torch.cat([ratio] * 2) if self.do_classifier_free_guidance else ratio, | |
effnet=effnet, | |
clip=text_encoder_hidden_states, | |
) | |
# 8. Check for classifier free guidance and apply it | |
if self.do_classifier_free_guidance: | |
predicted_latents_text, predicted_latents_uncond = predicted_latents.chunk(2) | |
predicted_latents = torch.lerp(predicted_latents_uncond, predicted_latents_text, self.guidance_scale) | |
# 9. Renoise latents to next timestep | |
latents = self.scheduler.step( | |
model_output=predicted_latents, | |
timestep=ratio, | |
sample=latents, | |
generator=generator, | |
).prev_sample | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
image_embeddings = callback_outputs.pop("image_embeddings", image_embeddings) | |
text_encoder_hidden_states = callback_outputs.pop( | |
"text_encoder_hidden_states", text_encoder_hidden_states | |
) | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
if output_type not in ["pt", "np", "pil", "latent"]: | |
raise ValueError( | |
f"Only the output types `pt`, `np`, `pil` and `latent` are supported not output_type={output_type}" | |
) | |
if not output_type == "latent": | |
# 10. Scale and decode the image latents with vq-vae | |
latents = self.vqgan.config.scale_factor * latents | |
images = self.vqgan.decode(latents).sample.clamp(0, 1) | |
if output_type == "np": | |
images = images.permute(0, 2, 3, 1).cpu().float().numpy() | |
elif output_type == "pil": | |
images = images.permute(0, 2, 3, 1).cpu().float().numpy() | |
images = self.numpy_to_pil(images) | |
else: | |
images = latents | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return images | |
return ImagePipelineOutput(images) | |