PowerPaint / app.py
sacj's picture
Update app.py (#8)
24b767e verified
import os
import random
import gradio as gr
import numpy as np
import torch
from PIL import Image, ImageFilter
from transformers import CLIPTextModel
from diffusers import UniPCMultistepScheduler
from model.BrushNet_CA import BrushNetModel
from model.diffusers_c.models import UNet2DConditionModel
from pipeline.pipeline_PowerPaint_Brushnet_CA import StableDiffusionPowerPaintBrushNetPipeline
from utils.utils import TokenizerWrapper, add_tokens
base_path = "./PowerPaint_v2"
os.system("apt install git")
os.system("apt install git-lfs")
os.system(f"git lfs clone https://code.openxlab.org.cn/zhuangjunhao/PowerPaint_v2.git {base_path}")
os.system(f"cd {base_path} && git lfs pull")
os.system("cd ..")
torch.set_grad_enabled(False)
context_prompt = ""
context_negative_prompt = ""
base_model_path = "./PowerPaint_v2/realisticVisionV60B1_v51VAE/"
dtype = torch.float16
unet = UNet2DConditionModel.from_pretrained(
"runwayml/stable-diffusion-v1-5", subfolder="unet", revision=None, torch_dtype=dtype
)
text_encoder_brushnet = CLIPTextModel.from_pretrained(
"runwayml/stable-diffusion-v1-5", subfolder="text_encoder", revision=None, torch_dtype=dtype
)
brushnet = BrushNetModel.from_unet(unet)
global pipe
pipe = StableDiffusionPowerPaintBrushNetPipeline.from_pretrained(
base_model_path,
brushnet=brushnet,
text_encoder_brushnet=text_encoder_brushnet,
torch_dtype=dtype,
low_cpu_mem_usage=False,
safety_checker=None,
)
pipe.unet = UNet2DConditionModel.from_pretrained(base_model_path, subfolder="unet", revision=None, torch_dtype=dtype)
pipe.tokenizer = TokenizerWrapper(from_pretrained=base_model_path, subfolder="tokenizer", revision=None)
add_tokens(
tokenizer=pipe.tokenizer,
text_encoder=pipe.text_encoder_brushnet,
placeholder_tokens=["P_ctxt", "P_shape", "P_obj"],
initialize_tokens=["a", "a", "a"],
num_vectors_per_token=10,
)
from safetensors.torch import load_model
load_model(pipe.brushnet, "./PowerPaint_v2/PowerPaint_Brushnet/diffusion_pytorch_model.safetensors")
pipe.text_encoder_brushnet.load_state_dict(
torch.load("./PowerPaint_v2/PowerPaint_Brushnet/pytorch_model.bin"), strict=False
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
global current_control
current_control = "canny"
# controlnet_conditioning_scale = 0.8
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def add_task(control_type):
# print(control_type)
if control_type == "object-removal":
promptA = "P_ctxt"
promptB = "P_ctxt"
negative_promptA = "P_obj"
negative_promptB = "P_obj"
elif control_type == "context-aware":
promptA = "P_ctxt"
promptB = "P_ctxt"
negative_promptA = ""
negative_promptB = ""
elif control_type == "shape-guided":
promptA = "P_shape"
promptB = "P_ctxt"
negative_promptA = "P_shape"
negative_promptB = "P_ctxt"
elif control_type == "image-outpainting":
promptA = "P_ctxt"
promptB = "P_ctxt"
negative_promptA = "P_obj"
negative_promptB = "P_obj"
else:
promptA = "P_obj"
promptB = "P_obj"
negative_promptA = "P_obj"
negative_promptB = "P_obj"
return promptA, promptB, negative_promptA, negative_promptB
def predict(
input_image,
prompt,
fitting_degree,
ddim_steps,
scale,
seed,
negative_prompt,
task,
left_expansion_ratio,
right_expansion_ratio,
top_expansion_ratio,
bottom_expansion_ratio,
):
size1, size2 = input_image["image"].convert("RGB").size
if task != "image-outpainting":
input_image["image"] = input_image["image"].convert("RGB").resize((1024, 1024), Image.LANCZOS)
else:
input_image["image"] = input_image["image"].convert("RGB").resize((1024, 1024), Image.LANCZOS)
if task == "image-outpainting" or task == "context-aware":
prompt = prompt + " empty scene"
if task == "object-removal":
prompt = prompt + " empty scene blur"
if (
left_expansion_ratio is not None and right_expansion_ratio is not None
and top_expansion_ratio is not None and bottom_expansion_ratio is not None
):
o_W, o_H = input_image["image"].convert("RGB").size
c_W = int((1 + left_expansion_ratio + right_expansion_ratio) * o_W)
c_H = int((1 + top_expansion_ratio + bottom_expansion_ratio) * o_H)
expand_img = np.ones((c_H, c_W, 3), dtype=np.uint8) * 127
original_img = np.array(input_image["image"])
expand_img[
int(top_expansion_ratio * o_H):int(top_expansion_ratio * o_H) + o_H,
int(left_expansion_ratio * o_W):int(left_expansion_ratio * o_W) + o_W,
:
] = original_img
blurry_gap = 10
expand_mask = np.ones((c_H, c_W, 3), dtype=np.uint8) * 255
expand_mask[
int(top_expansion_ratio * o_H) + blurry_gap:int(top_expansion_ratio * o_H) + o_H - blurry_gap,
int(left_expansion_ratio * o_W) + blurry_gap:int(left_expansion_ratio * o_W) + o_W - blurry_gap,
:
] = 0
input_image["image"] = Image.fromarray(expand_img)
input_image["mask"] = Image.fromarray(expand_mask)
promptA, promptB, negative_promptA, negative_promptB = add_task(task)
img = np.array(input_image["image"].convert("RGB"))
W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
input_image["image"] = input_image["image"].resize((H, W), Image.LANCZOS)
input_image["mask"] = input_image["mask"].resize((H, W), Image.LANCZOS)
np_inpimg = np.array(input_image["image"])
np_inmask = np.array(input_image["mask"]) / 255.0
if len(np_inmask.shape)==2:
np_inmask = np.expand_dims(np_inmask, axis=-1)
# return np_inpimg, np_inmask
np_inpimg = np_inpimg * (1 - np_inmask)
input_image["image"] = Image.fromarray(np_inpimg.astype(np.uint8)).convert("RGB")
# return input_image
set_seed(seed)
global pipe
result = pipe(
promptA=promptA,
promptB=promptB,
promptU=prompt,
tradoff=fitting_degree,
tradoff_nag=fitting_degree,
image=input_image["image"].convert("RGB"),
mask=input_image["mask"].convert("RGB"),
num_inference_steps=ddim_steps,
generator=torch.Generator("cuda").manual_seed(seed),
brushnet_conditioning_scale=1.0,
negative_promptA=negative_promptA,
negative_promptB=negative_promptB,
negative_promptU=negative_prompt,
guidance_scale=scale,
width=H,
height=W,
).images[0]
mask_np = np.array(input_image["mask"].convert("RGB"))
red = np.array(result).astype("float") * 1
red[:, :, 0] = 180.0
red[:, :, 2] = 0
red[:, :, 1] = 0
result_m = np.array(result)
result_m = Image.fromarray(
(
result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red
).astype("uint8")
)
m_img = input_image["mask"].convert("RGB").filter(ImageFilter.GaussianBlur(radius=3))
m_img = np.asarray(m_img) / 255.0
img_np = np.asarray(input_image["image"].convert("RGB")) / 255.0
ours_np = np.asarray(result) / 255.0
ours_np = ours_np * m_img + (1 - m_img) * img_np
result_paste = Image.fromarray(np.uint8(ours_np * 255))
dict_res = [input_image["mask"].convert("RGB"), result_m]
dict_out = [result]
return dict_out, dict_res
import gradio as gr
def custom_infer(input_image_path,
input_mask_path=None,
prompt="",
fitting_degree=0.5,
ddim_steps=20,
scale=5,
seed=143,
negative_prompt="",
task="text-guided",
left_expansion_ratio=0.2,
right_expansion_ratio=0.2,
top_expansion_ratio=0.2,
bottom_expansion_ratio=0.2):
image = Image.open(input_image_path)
if input_mask_path:
mask = Image.open(input_mask_path)
if task == "text-guided":
input_dict = {"image": image, "mask": mask}
a, b = predict(input_dict, prompt, fitting_degree, ddim_steps, scale, seed, negative_prompt, task, None, None, None, None)
if task == "image-outpainting":
input_dict = {"image": image}
a, b = predict(input_dict, prompt, fitting_degree, ddim_steps, scale, seed, negative_prompt, task, left_expansion_ratio, right_expansion_ratio, top_expansion_ratio, bottom_expansion_ratio)
return a[0]
import gradio as gr
# Define the Gradio interface using the new version
inputs = [
gr.Image(label="Input Image", type="filepath"),
gr.Image(label="Input Mask (optional)", type="filepath"),
gr.Textbox(label="Prompt", value="A beautiful landscape"),
gr.Slider(label="Fitting Degree", minimum=1, maximum=20, value=7, step=1),
gr.Slider(label="DDIM Steps", minimum=10, maximum=50, value=20, step=1),
gr.Slider(label="Scale", minimum=1, maximum=20, value=7.5, step=0.1),
gr.Slider(label="Use Seed", minimum=0, maximum=1300000, value=143, step=1),
gr.Textbox(label="Negative Prompt", value="blur, low quality"),
gr.Radio(label="Task", choices=["text-guided", "image-outpainting"], value="image-outpainting"),
gr.Slider(label="Left Expansion Ratio", minimum=0, maximum=2, value=0.2, step=0.01),
gr.Slider(label="Right Expansion Ratio", minimum=0, maximum=2, value=0.2, step=0.01),
gr.Slider(label="Top Expansion Ratio", minimum=0, maximum=2, value=0.2, step=0.01),
gr.Slider(label="Bottom Expansion Ratio", minimum=0, maximum=2, value=0.2, step=0.01)
]
outputs = [
gr.Image(label="Output Image")
]
# Create the Gradio interface
demo = gr.Interface(fn=custom_infer, inputs=inputs, outputs=outputs, title="Inference")
demo.queue(concurrency_count=1, max_size=1, api_open=True)
demo.launch(show_api=True)