Spaces:
Paused
Paused
File size: 10,151 Bytes
135b069 4ef12bf 135b069 24b767e 135b069 24b767e 135b069 4ef12bf 135b069 4ef12bf 135b069 4ef12bf 135b069 4ef12bf 135b069 24b767e 135b069 4ef12bf 135b069 4ef12bf 135b069 8512b06 135b069 8512b06 6f7c931 0596d11 8512b06 0596d11 8512b06 0596d11 b612b91 0596d11 8512b06 6f7c931 8512b06 0596d11 135b069 aeee019 8512b06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import os
import random
import gradio as gr
import numpy as np
import torch
from PIL import Image, ImageFilter
from transformers import CLIPTextModel
from diffusers import UniPCMultistepScheduler
from model.BrushNet_CA import BrushNetModel
from model.diffusers_c.models import UNet2DConditionModel
from pipeline.pipeline_PowerPaint_Brushnet_CA import StableDiffusionPowerPaintBrushNetPipeline
from utils.utils import TokenizerWrapper, add_tokens
base_path = "./PowerPaint_v2"
os.system("apt install git")
os.system("apt install git-lfs")
os.system(f"git lfs clone https://code.openxlab.org.cn/zhuangjunhao/PowerPaint_v2.git {base_path}")
os.system(f"cd {base_path} && git lfs pull")
os.system("cd ..")
torch.set_grad_enabled(False)
context_prompt = ""
context_negative_prompt = ""
base_model_path = "./PowerPaint_v2/realisticVisionV60B1_v51VAE/"
dtype = torch.float16
unet = UNet2DConditionModel.from_pretrained(
"runwayml/stable-diffusion-v1-5", subfolder="unet", revision=None, torch_dtype=dtype
)
text_encoder_brushnet = CLIPTextModel.from_pretrained(
"runwayml/stable-diffusion-v1-5", subfolder="text_encoder", revision=None, torch_dtype=dtype
)
brushnet = BrushNetModel.from_unet(unet)
global pipe
pipe = StableDiffusionPowerPaintBrushNetPipeline.from_pretrained(
base_model_path,
brushnet=brushnet,
text_encoder_brushnet=text_encoder_brushnet,
torch_dtype=dtype,
low_cpu_mem_usage=False,
safety_checker=None,
)
pipe.unet = UNet2DConditionModel.from_pretrained(base_model_path, subfolder="unet", revision=None, torch_dtype=dtype)
pipe.tokenizer = TokenizerWrapper(from_pretrained=base_model_path, subfolder="tokenizer", revision=None)
add_tokens(
tokenizer=pipe.tokenizer,
text_encoder=pipe.text_encoder_brushnet,
placeholder_tokens=["P_ctxt", "P_shape", "P_obj"],
initialize_tokens=["a", "a", "a"],
num_vectors_per_token=10,
)
from safetensors.torch import load_model
load_model(pipe.brushnet, "./PowerPaint_v2/PowerPaint_Brushnet/diffusion_pytorch_model.safetensors")
pipe.text_encoder_brushnet.load_state_dict(
torch.load("./PowerPaint_v2/PowerPaint_Brushnet/pytorch_model.bin"), strict=False
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
global current_control
current_control = "canny"
# controlnet_conditioning_scale = 0.8
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def add_task(control_type):
# print(control_type)
if control_type == "object-removal":
promptA = "P_ctxt"
promptB = "P_ctxt"
negative_promptA = "P_obj"
negative_promptB = "P_obj"
elif control_type == "context-aware":
promptA = "P_ctxt"
promptB = "P_ctxt"
negative_promptA = ""
negative_promptB = ""
elif control_type == "shape-guided":
promptA = "P_shape"
promptB = "P_ctxt"
negative_promptA = "P_shape"
negative_promptB = "P_ctxt"
elif control_type == "image-outpainting":
promptA = "P_ctxt"
promptB = "P_ctxt"
negative_promptA = "P_obj"
negative_promptB = "P_obj"
else:
promptA = "P_obj"
promptB = "P_obj"
negative_promptA = "P_obj"
negative_promptB = "P_obj"
return promptA, promptB, negative_promptA, negative_promptB
def predict(
input_image,
prompt,
fitting_degree,
ddim_steps,
scale,
seed,
negative_prompt,
task,
left_expansion_ratio,
right_expansion_ratio,
top_expansion_ratio,
bottom_expansion_ratio,
):
size1, size2 = input_image["image"].convert("RGB").size
if task != "image-outpainting":
input_image["image"] = input_image["image"].convert("RGB").resize((1024, 1024), Image.LANCZOS)
else:
input_image["image"] = input_image["image"].convert("RGB").resize((1024, 1024), Image.LANCZOS)
if task == "image-outpainting" or task == "context-aware":
prompt = prompt + " empty scene"
if task == "object-removal":
prompt = prompt + " empty scene blur"
if (
left_expansion_ratio is not None and right_expansion_ratio is not None
and top_expansion_ratio is not None and bottom_expansion_ratio is not None
):
o_W, o_H = input_image["image"].convert("RGB").size
c_W = int((1 + left_expansion_ratio + right_expansion_ratio) * o_W)
c_H = int((1 + top_expansion_ratio + bottom_expansion_ratio) * o_H)
expand_img = np.ones((c_H, c_W, 3), dtype=np.uint8) * 127
original_img = np.array(input_image["image"])
expand_img[
int(top_expansion_ratio * o_H):int(top_expansion_ratio * o_H) + o_H,
int(left_expansion_ratio * o_W):int(left_expansion_ratio * o_W) + o_W,
:
] = original_img
blurry_gap = 10
expand_mask = np.ones((c_H, c_W, 3), dtype=np.uint8) * 255
expand_mask[
int(top_expansion_ratio * o_H) + blurry_gap:int(top_expansion_ratio * o_H) + o_H - blurry_gap,
int(left_expansion_ratio * o_W) + blurry_gap:int(left_expansion_ratio * o_W) + o_W - blurry_gap,
:
] = 0
input_image["image"] = Image.fromarray(expand_img)
input_image["mask"] = Image.fromarray(expand_mask)
promptA, promptB, negative_promptA, negative_promptB = add_task(task)
img = np.array(input_image["image"].convert("RGB"))
W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
input_image["image"] = input_image["image"].resize((H, W), Image.LANCZOS)
input_image["mask"] = input_image["mask"].resize((H, W), Image.LANCZOS)
np_inpimg = np.array(input_image["image"])
np_inmask = np.array(input_image["mask"]) / 255.0
if len(np_inmask.shape)==2:
np_inmask = np.expand_dims(np_inmask, axis=-1)
# return np_inpimg, np_inmask
np_inpimg = np_inpimg * (1 - np_inmask)
input_image["image"] = Image.fromarray(np_inpimg.astype(np.uint8)).convert("RGB")
# return input_image
set_seed(seed)
global pipe
result = pipe(
promptA=promptA,
promptB=promptB,
promptU=prompt,
tradoff=fitting_degree,
tradoff_nag=fitting_degree,
image=input_image["image"].convert("RGB"),
mask=input_image["mask"].convert("RGB"),
num_inference_steps=ddim_steps,
generator=torch.Generator("cuda").manual_seed(seed),
brushnet_conditioning_scale=1.0,
negative_promptA=negative_promptA,
negative_promptB=negative_promptB,
negative_promptU=negative_prompt,
guidance_scale=scale,
width=H,
height=W,
).images[0]
mask_np = np.array(input_image["mask"].convert("RGB"))
red = np.array(result).astype("float") * 1
red[:, :, 0] = 180.0
red[:, :, 2] = 0
red[:, :, 1] = 0
result_m = np.array(result)
result_m = Image.fromarray(
(
result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red
).astype("uint8")
)
m_img = input_image["mask"].convert("RGB").filter(ImageFilter.GaussianBlur(radius=3))
m_img = np.asarray(m_img) / 255.0
img_np = np.asarray(input_image["image"].convert("RGB")) / 255.0
ours_np = np.asarray(result) / 255.0
ours_np = ours_np * m_img + (1 - m_img) * img_np
result_paste = Image.fromarray(np.uint8(ours_np * 255))
dict_res = [input_image["mask"].convert("RGB"), result_m]
dict_out = [result]
return dict_out, dict_res
import gradio as gr
def custom_infer(input_image_path,
input_mask_path=None,
prompt="",
fitting_degree=0.5,
ddim_steps=20,
scale=5,
seed=143,
negative_prompt="",
task="text-guided",
left_expansion_ratio=0.2,
right_expansion_ratio=0.2,
top_expansion_ratio=0.2,
bottom_expansion_ratio=0.2):
image = Image.open(input_image_path)
if input_mask_path:
mask = Image.open(input_mask_path)
if task == "text-guided":
input_dict = {"image": image, "mask": mask}
a, b = predict(input_dict, prompt, fitting_degree, ddim_steps, scale, seed, negative_prompt, task, None, None, None, None)
if task == "image-outpainting":
input_dict = {"image": image}
a, b = predict(input_dict, prompt, fitting_degree, ddim_steps, scale, seed, negative_prompt, task, left_expansion_ratio, right_expansion_ratio, top_expansion_ratio, bottom_expansion_ratio)
return a[0]
import gradio as gr
# Define the Gradio interface using the new version
inputs = [
gr.Image(label="Input Image", type="filepath"),
gr.Image(label="Input Mask (optional)", type="filepath"),
gr.Textbox(label="Prompt", value="A beautiful landscape"),
gr.Slider(label="Fitting Degree", minimum=1, maximum=20, value=7, step=1),
gr.Slider(label="DDIM Steps", minimum=10, maximum=50, value=20, step=1),
gr.Slider(label="Scale", minimum=1, maximum=20, value=7.5, step=0.1),
gr.Slider(label="Use Seed", minimum=0, maximum=1300000, value=143, step=1),
gr.Textbox(label="Negative Prompt", value="blur, low quality"),
gr.Radio(label="Task", choices=["text-guided", "image-outpainting"], value="image-outpainting"),
gr.Slider(label="Left Expansion Ratio", minimum=0, maximum=2, value=0.2, step=0.01),
gr.Slider(label="Right Expansion Ratio", minimum=0, maximum=2, value=0.2, step=0.01),
gr.Slider(label="Top Expansion Ratio", minimum=0, maximum=2, value=0.2, step=0.01),
gr.Slider(label="Bottom Expansion Ratio", minimum=0, maximum=2, value=0.2, step=0.01)
]
outputs = [
gr.Image(label="Output Image")
]
# Create the Gradio interface
demo = gr.Interface(fn=custom_infer, inputs=inputs, outputs=outputs, title="Inference")
demo.queue(concurrency_count=1, max_size=1, api_open=True)
demo.launch(show_api=True)
|