sachinkidzure's picture
initial (#1)
135b069 verified
raw
history blame
39.1 kB
# Copyright 2024 Open AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import Dict, Optional, Tuple
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
from ...utils import BaseOutput
from .camera import create_pan_cameras
def sample_pmf(pmf: torch.Tensor, n_samples: int) -> torch.Tensor:
r"""
Sample from the given discrete probability distribution with replacement.
The i-th bin is assumed to have mass pmf[i].
Args:
pmf: [batch_size, *shape, n_samples, 1] where (pmf.sum(dim=-2) == 1).all()
n_samples: number of samples
Return:
indices sampled with replacement
"""
*shape, support_size, last_dim = pmf.shape
assert last_dim == 1
cdf = torch.cumsum(pmf.view(-1, support_size), dim=1)
inds = torch.searchsorted(cdf, torch.rand(cdf.shape[0], n_samples, device=cdf.device))
return inds.view(*shape, n_samples, 1).clamp(0, support_size - 1)
def posenc_nerf(x: torch.Tensor, min_deg: int = 0, max_deg: int = 15) -> torch.Tensor:
"""
Concatenate x and its positional encodings, following NeRF.
Reference: https://arxiv.org/pdf/2210.04628.pdf
"""
if min_deg == max_deg:
return x
scales = 2.0 ** torch.arange(min_deg, max_deg, dtype=x.dtype, device=x.device)
*shape, dim = x.shape
xb = (x.reshape(-1, 1, dim) * scales.view(1, -1, 1)).reshape(*shape, -1)
assert xb.shape[-1] == dim * (max_deg - min_deg)
emb = torch.cat([xb, xb + math.pi / 2.0], axis=-1).sin()
return torch.cat([x, emb], dim=-1)
def encode_position(position):
return posenc_nerf(position, min_deg=0, max_deg=15)
def encode_direction(position, direction=None):
if direction is None:
return torch.zeros_like(posenc_nerf(position, min_deg=0, max_deg=8))
else:
return posenc_nerf(direction, min_deg=0, max_deg=8)
def _sanitize_name(x: str) -> str:
return x.replace(".", "__")
def integrate_samples(volume_range, ts, density, channels):
r"""
Function integrating the model output.
Args:
volume_range: Specifies the integral range [t0, t1]
ts: timesteps
density: torch.Tensor [batch_size, *shape, n_samples, 1]
channels: torch.Tensor [batch_size, *shape, n_samples, n_channels]
returns:
channels: integrated rgb output weights: torch.Tensor [batch_size, *shape, n_samples, 1] (density
*transmittance)[i] weight for each rgb output at [..., i, :]. transmittance: transmittance of this volume
)
"""
# 1. Calculate the weights
_, _, dt = volume_range.partition(ts)
ddensity = density * dt
mass = torch.cumsum(ddensity, dim=-2)
transmittance = torch.exp(-mass[..., -1, :])
alphas = 1.0 - torch.exp(-ddensity)
Ts = torch.exp(torch.cat([torch.zeros_like(mass[..., :1, :]), -mass[..., :-1, :]], dim=-2))
# This is the probability of light hitting and reflecting off of
# something at depth [..., i, :].
weights = alphas * Ts
# 2. Integrate channels
channels = torch.sum(channels * weights, dim=-2)
return channels, weights, transmittance
def volume_query_points(volume, grid_size):
indices = torch.arange(grid_size**3, device=volume.bbox_min.device)
zs = indices % grid_size
ys = torch.div(indices, grid_size, rounding_mode="trunc") % grid_size
xs = torch.div(indices, grid_size**2, rounding_mode="trunc") % grid_size
combined = torch.stack([xs, ys, zs], dim=1)
return (combined.float() / (grid_size - 1)) * (volume.bbox_max - volume.bbox_min) + volume.bbox_min
def _convert_srgb_to_linear(u: torch.Tensor):
return torch.where(u <= 0.04045, u / 12.92, ((u + 0.055) / 1.055) ** 2.4)
def _create_flat_edge_indices(
flat_cube_indices: torch.Tensor,
grid_size: Tuple[int, int, int],
):
num_xs = (grid_size[0] - 1) * grid_size[1] * grid_size[2]
y_offset = num_xs
num_ys = grid_size[0] * (grid_size[1] - 1) * grid_size[2]
z_offset = num_xs + num_ys
return torch.stack(
[
# Edges spanning x-axis.
flat_cube_indices[:, 0] * grid_size[1] * grid_size[2]
+ flat_cube_indices[:, 1] * grid_size[2]
+ flat_cube_indices[:, 2],
flat_cube_indices[:, 0] * grid_size[1] * grid_size[2]
+ (flat_cube_indices[:, 1] + 1) * grid_size[2]
+ flat_cube_indices[:, 2],
flat_cube_indices[:, 0] * grid_size[1] * grid_size[2]
+ flat_cube_indices[:, 1] * grid_size[2]
+ flat_cube_indices[:, 2]
+ 1,
flat_cube_indices[:, 0] * grid_size[1] * grid_size[2]
+ (flat_cube_indices[:, 1] + 1) * grid_size[2]
+ flat_cube_indices[:, 2]
+ 1,
# Edges spanning y-axis.
(
y_offset
+ flat_cube_indices[:, 0] * (grid_size[1] - 1) * grid_size[2]
+ flat_cube_indices[:, 1] * grid_size[2]
+ flat_cube_indices[:, 2]
),
(
y_offset
+ (flat_cube_indices[:, 0] + 1) * (grid_size[1] - 1) * grid_size[2]
+ flat_cube_indices[:, 1] * grid_size[2]
+ flat_cube_indices[:, 2]
),
(
y_offset
+ flat_cube_indices[:, 0] * (grid_size[1] - 1) * grid_size[2]
+ flat_cube_indices[:, 1] * grid_size[2]
+ flat_cube_indices[:, 2]
+ 1
),
(
y_offset
+ (flat_cube_indices[:, 0] + 1) * (grid_size[1] - 1) * grid_size[2]
+ flat_cube_indices[:, 1] * grid_size[2]
+ flat_cube_indices[:, 2]
+ 1
),
# Edges spanning z-axis.
(
z_offset
+ flat_cube_indices[:, 0] * grid_size[1] * (grid_size[2] - 1)
+ flat_cube_indices[:, 1] * (grid_size[2] - 1)
+ flat_cube_indices[:, 2]
),
(
z_offset
+ (flat_cube_indices[:, 0] + 1) * grid_size[1] * (grid_size[2] - 1)
+ flat_cube_indices[:, 1] * (grid_size[2] - 1)
+ flat_cube_indices[:, 2]
),
(
z_offset
+ flat_cube_indices[:, 0] * grid_size[1] * (grid_size[2] - 1)
+ (flat_cube_indices[:, 1] + 1) * (grid_size[2] - 1)
+ flat_cube_indices[:, 2]
),
(
z_offset
+ (flat_cube_indices[:, 0] + 1) * grid_size[1] * (grid_size[2] - 1)
+ (flat_cube_indices[:, 1] + 1) * (grid_size[2] - 1)
+ flat_cube_indices[:, 2]
),
],
dim=-1,
)
class VoidNeRFModel(nn.Module):
"""
Implements the default empty space model where all queries are rendered as background.
"""
def __init__(self, background, channel_scale=255.0):
super().__init__()
background = nn.Parameter(torch.from_numpy(np.array(background)).to(dtype=torch.float32) / channel_scale)
self.register_buffer("background", background)
def forward(self, position):
background = self.background[None].to(position.device)
shape = position.shape[:-1]
ones = [1] * (len(shape) - 1)
n_channels = background.shape[-1]
background = torch.broadcast_to(background.view(background.shape[0], *ones, n_channels), [*shape, n_channels])
return background
@dataclass
class VolumeRange:
t0: torch.Tensor
t1: torch.Tensor
intersected: torch.Tensor
def __post_init__(self):
assert self.t0.shape == self.t1.shape == self.intersected.shape
def partition(self, ts):
"""
Partitions t0 and t1 into n_samples intervals.
Args:
ts: [batch_size, *shape, n_samples, 1]
Return:
lower: [batch_size, *shape, n_samples, 1] upper: [batch_size, *shape, n_samples, 1] delta: [batch_size,
*shape, n_samples, 1]
where
ts \\in [lower, upper] deltas = upper - lower
"""
mids = (ts[..., 1:, :] + ts[..., :-1, :]) * 0.5
lower = torch.cat([self.t0[..., None, :], mids], dim=-2)
upper = torch.cat([mids, self.t1[..., None, :]], dim=-2)
delta = upper - lower
assert lower.shape == upper.shape == delta.shape == ts.shape
return lower, upper, delta
class BoundingBoxVolume(nn.Module):
"""
Axis-aligned bounding box defined by the two opposite corners.
"""
def __init__(
self,
*,
bbox_min,
bbox_max,
min_dist: float = 0.0,
min_t_range: float = 1e-3,
):
"""
Args:
bbox_min: the left/bottommost corner of the bounding box
bbox_max: the other corner of the bounding box
min_dist: all rays should start at least this distance away from the origin.
"""
super().__init__()
self.min_dist = min_dist
self.min_t_range = min_t_range
self.bbox_min = torch.tensor(bbox_min)
self.bbox_max = torch.tensor(bbox_max)
self.bbox = torch.stack([self.bbox_min, self.bbox_max])
assert self.bbox.shape == (2, 3)
assert min_dist >= 0.0
assert min_t_range > 0.0
def intersect(
self,
origin: torch.Tensor,
direction: torch.Tensor,
t0_lower: Optional[torch.Tensor] = None,
epsilon=1e-6,
):
"""
Args:
origin: [batch_size, *shape, 3]
direction: [batch_size, *shape, 3]
t0_lower: Optional [batch_size, *shape, 1] lower bound of t0 when intersecting this volume.
params: Optional meta parameters in case Volume is parametric
epsilon: to stabilize calculations
Return:
A tuple of (t0, t1, intersected) where each has a shape [batch_size, *shape, 1]. If a ray intersects with
the volume, `o + td` is in the volume for all t in [t0, t1]. If the volume is bounded, t1 is guaranteed to
be on the boundary of the volume.
"""
batch_size, *shape, _ = origin.shape
ones = [1] * len(shape)
bbox = self.bbox.view(1, *ones, 2, 3).to(origin.device)
def _safe_divide(a, b, epsilon=1e-6):
return a / torch.where(b < 0, b - epsilon, b + epsilon)
ts = _safe_divide(bbox - origin[..., None, :], direction[..., None, :], epsilon=epsilon)
# Cases to think about:
#
# 1. t1 <= t0: the ray does not pass through the AABB.
# 2. t0 < t1 <= 0: the ray intersects but the BB is behind the origin.
# 3. t0 <= 0 <= t1: the ray starts from inside the BB
# 4. 0 <= t0 < t1: the ray is not inside and intersects with the BB twice.
#
# 1 and 4 are clearly handled from t0 < t1 below.
# Making t0 at least min_dist (>= 0) takes care of 2 and 3.
t0 = ts.min(dim=-2).values.max(dim=-1, keepdim=True).values.clamp(self.min_dist)
t1 = ts.max(dim=-2).values.min(dim=-1, keepdim=True).values
assert t0.shape == t1.shape == (batch_size, *shape, 1)
if t0_lower is not None:
assert t0.shape == t0_lower.shape
t0 = torch.maximum(t0, t0_lower)
intersected = t0 + self.min_t_range < t1
t0 = torch.where(intersected, t0, torch.zeros_like(t0))
t1 = torch.where(intersected, t1, torch.ones_like(t1))
return VolumeRange(t0=t0, t1=t1, intersected=intersected)
class StratifiedRaySampler(nn.Module):
"""
Instead of fixed intervals, a sample is drawn uniformly at random from each interval.
"""
def __init__(self, depth_mode: str = "linear"):
"""
:param depth_mode: linear samples ts linearly in depth. harmonic ensures
closer points are sampled more densely.
"""
self.depth_mode = depth_mode
assert self.depth_mode in ("linear", "geometric", "harmonic")
def sample(
self,
t0: torch.Tensor,
t1: torch.Tensor,
n_samples: int,
epsilon: float = 1e-3,
) -> torch.Tensor:
"""
Args:
t0: start time has shape [batch_size, *shape, 1]
t1: finish time has shape [batch_size, *shape, 1]
n_samples: number of ts to sample
Return:
sampled ts of shape [batch_size, *shape, n_samples, 1]
"""
ones = [1] * (len(t0.shape) - 1)
ts = torch.linspace(0, 1, n_samples).view(*ones, n_samples).to(t0.dtype).to(t0.device)
if self.depth_mode == "linear":
ts = t0 * (1.0 - ts) + t1 * ts
elif self.depth_mode == "geometric":
ts = (t0.clamp(epsilon).log() * (1.0 - ts) + t1.clamp(epsilon).log() * ts).exp()
elif self.depth_mode == "harmonic":
# The original NeRF recommends this interpolation scheme for
# spherical scenes, but there could be some weird edge cases when
# the observer crosses from the inner to outer volume.
ts = 1.0 / (1.0 / t0.clamp(epsilon) * (1.0 - ts) + 1.0 / t1.clamp(epsilon) * ts)
mids = 0.5 * (ts[..., 1:] + ts[..., :-1])
upper = torch.cat([mids, t1], dim=-1)
lower = torch.cat([t0, mids], dim=-1)
# yiyi notes: add a random seed here for testing, don't forget to remove
torch.manual_seed(0)
t_rand = torch.rand_like(ts)
ts = lower + (upper - lower) * t_rand
return ts.unsqueeze(-1)
class ImportanceRaySampler(nn.Module):
"""
Given the initial estimate of densities, this samples more from regions/bins expected to have objects.
"""
def __init__(
self,
volume_range: VolumeRange,
ts: torch.Tensor,
weights: torch.Tensor,
blur_pool: bool = False,
alpha: float = 1e-5,
):
"""
Args:
volume_range: the range in which a ray intersects the given volume.
ts: earlier samples from the coarse rendering step
weights: discretized version of density * transmittance
blur_pool: if true, use 2-tap max + 2-tap blur filter from mip-NeRF.
alpha: small value to add to weights.
"""
self.volume_range = volume_range
self.ts = ts.clone().detach()
self.weights = weights.clone().detach()
self.blur_pool = blur_pool
self.alpha = alpha
@torch.no_grad()
def sample(self, t0: torch.Tensor, t1: torch.Tensor, n_samples: int) -> torch.Tensor:
"""
Args:
t0: start time has shape [batch_size, *shape, 1]
t1: finish time has shape [batch_size, *shape, 1]
n_samples: number of ts to sample
Return:
sampled ts of shape [batch_size, *shape, n_samples, 1]
"""
lower, upper, _ = self.volume_range.partition(self.ts)
batch_size, *shape, n_coarse_samples, _ = self.ts.shape
weights = self.weights
if self.blur_pool:
padded = torch.cat([weights[..., :1, :], weights, weights[..., -1:, :]], dim=-2)
maxes = torch.maximum(padded[..., :-1, :], padded[..., 1:, :])
weights = 0.5 * (maxes[..., :-1, :] + maxes[..., 1:, :])
weights = weights + self.alpha
pmf = weights / weights.sum(dim=-2, keepdim=True)
inds = sample_pmf(pmf, n_samples)
assert inds.shape == (batch_size, *shape, n_samples, 1)
assert (inds >= 0).all() and (inds < n_coarse_samples).all()
t_rand = torch.rand(inds.shape, device=inds.device)
lower_ = torch.gather(lower, -2, inds)
upper_ = torch.gather(upper, -2, inds)
ts = lower_ + (upper_ - lower_) * t_rand
ts = torch.sort(ts, dim=-2).values
return ts
@dataclass
class MeshDecoderOutput(BaseOutput):
"""
A 3D triangle mesh with optional data at the vertices and faces.
Args:
verts (`torch.Tensor` of shape `(N, 3)`):
array of vertext coordinates
faces (`torch.Tensor` of shape `(N, 3)`):
array of triangles, pointing to indices in verts.
vertext_channels (Dict):
vertext coordinates for each color channel
"""
verts: torch.Tensor
faces: torch.Tensor
vertex_channels: Dict[str, torch.Tensor]
class MeshDecoder(nn.Module):
"""
Construct meshes from Signed distance functions (SDFs) using marching cubes method
"""
def __init__(self):
super().__init__()
cases = torch.zeros(256, 5, 3, dtype=torch.long)
masks = torch.zeros(256, 5, dtype=torch.bool)
self.register_buffer("cases", cases)
self.register_buffer("masks", masks)
def forward(self, field: torch.Tensor, min_point: torch.Tensor, size: torch.Tensor):
"""
For a signed distance field, produce a mesh using marching cubes.
:param field: a 3D tensor of field values, where negative values correspond
to the outside of the shape. The dimensions correspond to the x, y, and z directions, respectively.
:param min_point: a tensor of shape [3] containing the point corresponding
to (0, 0, 0) in the field.
:param size: a tensor of shape [3] containing the per-axis distance from the
(0, 0, 0) field corner and the (-1, -1, -1) field corner.
"""
assert len(field.shape) == 3, "input must be a 3D scalar field"
dev = field.device
cases = self.cases.to(dev)
masks = self.masks.to(dev)
min_point = min_point.to(dev)
size = size.to(dev)
grid_size = field.shape
grid_size_tensor = torch.tensor(grid_size).to(size)
# Create bitmasks between 0 and 255 (inclusive) indicating the state
# of the eight corners of each cube.
bitmasks = (field > 0).to(torch.uint8)
bitmasks = bitmasks[:-1, :, :] | (bitmasks[1:, :, :] << 1)
bitmasks = bitmasks[:, :-1, :] | (bitmasks[:, 1:, :] << 2)
bitmasks = bitmasks[:, :, :-1] | (bitmasks[:, :, 1:] << 4)
# Compute corner coordinates across the entire grid.
corner_coords = torch.empty(*grid_size, 3, device=dev, dtype=field.dtype)
corner_coords[range(grid_size[0]), :, :, 0] = torch.arange(grid_size[0], device=dev, dtype=field.dtype)[
:, None, None
]
corner_coords[:, range(grid_size[1]), :, 1] = torch.arange(grid_size[1], device=dev, dtype=field.dtype)[
:, None
]
corner_coords[:, :, range(grid_size[2]), 2] = torch.arange(grid_size[2], device=dev, dtype=field.dtype)
# Compute all vertices across all edges in the grid, even though we will
# throw some out later. We have (X-1)*Y*Z + X*(Y-1)*Z + X*Y*(Z-1) vertices.
# These are all midpoints, and don't account for interpolation (which is
# done later based on the used edge midpoints).
edge_midpoints = torch.cat(
[
((corner_coords[:-1] + corner_coords[1:]) / 2).reshape(-1, 3),
((corner_coords[:, :-1] + corner_coords[:, 1:]) / 2).reshape(-1, 3),
((corner_coords[:, :, :-1] + corner_coords[:, :, 1:]) / 2).reshape(-1, 3),
],
dim=0,
)
# Create a flat array of [X, Y, Z] indices for each cube.
cube_indices = torch.zeros(
grid_size[0] - 1, grid_size[1] - 1, grid_size[2] - 1, 3, device=dev, dtype=torch.long
)
cube_indices[range(grid_size[0] - 1), :, :, 0] = torch.arange(grid_size[0] - 1, device=dev)[:, None, None]
cube_indices[:, range(grid_size[1] - 1), :, 1] = torch.arange(grid_size[1] - 1, device=dev)[:, None]
cube_indices[:, :, range(grid_size[2] - 1), 2] = torch.arange(grid_size[2] - 1, device=dev)
flat_cube_indices = cube_indices.reshape(-1, 3)
# Create a flat array mapping each cube to 12 global edge indices.
edge_indices = _create_flat_edge_indices(flat_cube_indices, grid_size)
# Apply the LUT to figure out the triangles.
flat_bitmasks = bitmasks.reshape(-1).long() # must cast to long for indexing to believe this not a mask
local_tris = cases[flat_bitmasks]
local_masks = masks[flat_bitmasks]
# Compute the global edge indices for the triangles.
global_tris = torch.gather(edge_indices, 1, local_tris.reshape(local_tris.shape[0], -1)).reshape(
local_tris.shape
)
# Select the used triangles for each cube.
selected_tris = global_tris.reshape(-1, 3)[local_masks.reshape(-1)]
# Now we have a bunch of indices into the full list of possible vertices,
# but we want to reduce this list to only the used vertices.
used_vertex_indices = torch.unique(selected_tris.view(-1))
used_edge_midpoints = edge_midpoints[used_vertex_indices]
old_index_to_new_index = torch.zeros(len(edge_midpoints), device=dev, dtype=torch.long)
old_index_to_new_index[used_vertex_indices] = torch.arange(
len(used_vertex_indices), device=dev, dtype=torch.long
)
# Rewrite the triangles to use the new indices
faces = torch.gather(old_index_to_new_index, 0, selected_tris.view(-1)).reshape(selected_tris.shape)
# Compute the actual interpolated coordinates corresponding to edge midpoints.
v1 = torch.floor(used_edge_midpoints).to(torch.long)
v2 = torch.ceil(used_edge_midpoints).to(torch.long)
s1 = field[v1[:, 0], v1[:, 1], v1[:, 2]]
s2 = field[v2[:, 0], v2[:, 1], v2[:, 2]]
p1 = (v1.float() / (grid_size_tensor - 1)) * size + min_point
p2 = (v2.float() / (grid_size_tensor - 1)) * size + min_point
# The signs of s1 and s2 should be different. We want to find
# t such that t*s2 + (1-t)*s1 = 0.
t = (s1 / (s1 - s2))[:, None]
verts = t * p2 + (1 - t) * p1
return MeshDecoderOutput(verts=verts, faces=faces, vertex_channels=None)
@dataclass
class MLPNeRFModelOutput(BaseOutput):
density: torch.Tensor
signed_distance: torch.Tensor
channels: torch.Tensor
ts: torch.Tensor
class MLPNeRSTFModel(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
d_hidden: int = 256,
n_output: int = 12,
n_hidden_layers: int = 6,
act_fn: str = "swish",
insert_direction_at: int = 4,
):
super().__init__()
# Instantiate the MLP
# Find out the dimension of encoded position and direction
dummy = torch.eye(1, 3)
d_posenc_pos = encode_position(position=dummy).shape[-1]
d_posenc_dir = encode_direction(position=dummy).shape[-1]
mlp_widths = [d_hidden] * n_hidden_layers
input_widths = [d_posenc_pos] + mlp_widths
output_widths = mlp_widths + [n_output]
if insert_direction_at is not None:
input_widths[insert_direction_at] += d_posenc_dir
self.mlp = nn.ModuleList([nn.Linear(d_in, d_out) for d_in, d_out in zip(input_widths, output_widths)])
if act_fn == "swish":
# self.activation = swish
# yiyi testing:
self.activation = lambda x: F.silu(x)
else:
raise ValueError(f"Unsupported activation function {act_fn}")
self.sdf_activation = torch.tanh
self.density_activation = torch.nn.functional.relu
self.channel_activation = torch.sigmoid
def map_indices_to_keys(self, output):
h_map = {
"sdf": (0, 1),
"density_coarse": (1, 2),
"density_fine": (2, 3),
"stf": (3, 6),
"nerf_coarse": (6, 9),
"nerf_fine": (9, 12),
}
mapped_output = {k: output[..., start:end] for k, (start, end) in h_map.items()}
return mapped_output
def forward(self, *, position, direction, ts, nerf_level="coarse", rendering_mode="nerf"):
h = encode_position(position)
h_preact = h
h_directionless = None
for i, layer in enumerate(self.mlp):
if i == self.config.insert_direction_at: # 4 in the config
h_directionless = h_preact
h_direction = encode_direction(position, direction=direction)
h = torch.cat([h, h_direction], dim=-1)
h = layer(h)
h_preact = h
if i < len(self.mlp) - 1:
h = self.activation(h)
h_final = h
if h_directionless is None:
h_directionless = h_preact
activation = self.map_indices_to_keys(h_final)
if nerf_level == "coarse":
h_density = activation["density_coarse"]
else:
h_density = activation["density_fine"]
if rendering_mode == "nerf":
if nerf_level == "coarse":
h_channels = activation["nerf_coarse"]
else:
h_channels = activation["nerf_fine"]
elif rendering_mode == "stf":
h_channels = activation["stf"]
density = self.density_activation(h_density)
signed_distance = self.sdf_activation(activation["sdf"])
channels = self.channel_activation(h_channels)
# yiyi notes: I think signed_distance is not used
return MLPNeRFModelOutput(density=density, signed_distance=signed_distance, channels=channels, ts=ts)
class ChannelsProj(nn.Module):
def __init__(
self,
*,
vectors: int,
channels: int,
d_latent: int,
):
super().__init__()
self.proj = nn.Linear(d_latent, vectors * channels)
self.norm = nn.LayerNorm(channels)
self.d_latent = d_latent
self.vectors = vectors
self.channels = channels
def forward(self, x: torch.Tensor) -> torch.Tensor:
x_bvd = x
w_vcd = self.proj.weight.view(self.vectors, self.channels, self.d_latent)
b_vc = self.proj.bias.view(1, self.vectors, self.channels)
h = torch.einsum("bvd,vcd->bvc", x_bvd, w_vcd)
h = self.norm(h)
h = h + b_vc
return h
class ShapEParamsProjModel(ModelMixin, ConfigMixin):
"""
project the latent representation of a 3D asset to obtain weights of a multi-layer perceptron (MLP).
For more details, see the original paper:
"""
@register_to_config
def __init__(
self,
*,
param_names: Tuple[str] = (
"nerstf.mlp.0.weight",
"nerstf.mlp.1.weight",
"nerstf.mlp.2.weight",
"nerstf.mlp.3.weight",
),
param_shapes: Tuple[Tuple[int]] = (
(256, 93),
(256, 256),
(256, 256),
(256, 256),
),
d_latent: int = 1024,
):
super().__init__()
# check inputs
if len(param_names) != len(param_shapes):
raise ValueError("Must provide same number of `param_names` as `param_shapes`")
self.projections = nn.ModuleDict({})
for k, (vectors, channels) in zip(param_names, param_shapes):
self.projections[_sanitize_name(k)] = ChannelsProj(
vectors=vectors,
channels=channels,
d_latent=d_latent,
)
def forward(self, x: torch.Tensor):
out = {}
start = 0
for k, shape in zip(self.config.param_names, self.config.param_shapes):
vectors, _ = shape
end = start + vectors
x_bvd = x[:, start:end]
out[k] = self.projections[_sanitize_name(k)](x_bvd).reshape(len(x), *shape)
start = end
return out
class ShapERenderer(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
*,
param_names: Tuple[str] = (
"nerstf.mlp.0.weight",
"nerstf.mlp.1.weight",
"nerstf.mlp.2.weight",
"nerstf.mlp.3.weight",
),
param_shapes: Tuple[Tuple[int]] = (
(256, 93),
(256, 256),
(256, 256),
(256, 256),
),
d_latent: int = 1024,
d_hidden: int = 256,
n_output: int = 12,
n_hidden_layers: int = 6,
act_fn: str = "swish",
insert_direction_at: int = 4,
background: Tuple[float] = (
255.0,
255.0,
255.0,
),
):
super().__init__()
self.params_proj = ShapEParamsProjModel(
param_names=param_names,
param_shapes=param_shapes,
d_latent=d_latent,
)
self.mlp = MLPNeRSTFModel(d_hidden, n_output, n_hidden_layers, act_fn, insert_direction_at)
self.void = VoidNeRFModel(background=background, channel_scale=255.0)
self.volume = BoundingBoxVolume(bbox_max=[1.0, 1.0, 1.0], bbox_min=[-1.0, -1.0, -1.0])
self.mesh_decoder = MeshDecoder()
@torch.no_grad()
def render_rays(self, rays, sampler, n_samples, prev_model_out=None, render_with_direction=False):
"""
Perform volumetric rendering over a partition of possible t's in the union of rendering volumes (written below
with some abuse of notations)
C(r) := sum(
transmittance(t[i]) * integrate(
lambda t: density(t) * channels(t) * transmittance(t), [t[i], t[i + 1]],
) for i in range(len(parts))
) + transmittance(t[-1]) * void_model(t[-1]).channels
where
1) transmittance(s) := exp(-integrate(density, [t[0], s])) calculates the probability of light passing through
the volume specified by [t[0], s]. (transmittance of 1 means light can pass freely) 2) density and channels are
obtained by evaluating the appropriate part.model at time t. 3) [t[i], t[i + 1]] is defined as the range of t
where the ray intersects (parts[i].volume \\ union(part.volume for part in parts[:i])) at the surface of the
shell (if bounded). If the ray does not intersect, the integral over this segment is evaluated as 0 and
transmittance(t[i + 1]) := transmittance(t[i]). 4) The last term is integration to infinity (e.g. [t[-1],
math.inf]) that is evaluated by the void_model (i.e. we consider this space to be empty).
args:
rays: [batch_size x ... x 2 x 3] origin and direction. sampler: disjoint volume integrals. n_samples:
number of ts to sample. prev_model_outputs: model outputs from the previous rendering step, including
:return: A tuple of
- `channels`
- A importance samplers for additional fine-grained rendering
- raw model output
"""
origin, direction = rays[..., 0, :], rays[..., 1, :]
# Integrate over [t[i], t[i + 1]]
# 1 Intersect the rays with the current volume and sample ts to integrate along.
vrange = self.volume.intersect(origin, direction, t0_lower=None)
ts = sampler.sample(vrange.t0, vrange.t1, n_samples)
ts = ts.to(rays.dtype)
if prev_model_out is not None:
# Append the previous ts now before fprop because previous
# rendering used a different model and we can't reuse the output.
ts = torch.sort(torch.cat([ts, prev_model_out.ts], dim=-2), dim=-2).values
batch_size, *_shape, _t0_dim = vrange.t0.shape
_, *ts_shape, _ts_dim = ts.shape
# 2. Get the points along the ray and query the model
directions = torch.broadcast_to(direction.unsqueeze(-2), [batch_size, *ts_shape, 3])
positions = origin.unsqueeze(-2) + ts * directions
directions = directions.to(self.mlp.dtype)
positions = positions.to(self.mlp.dtype)
optional_directions = directions if render_with_direction else None
model_out = self.mlp(
position=positions,
direction=optional_directions,
ts=ts,
nerf_level="coarse" if prev_model_out is None else "fine",
)
# 3. Integrate the model results
channels, weights, transmittance = integrate_samples(
vrange, model_out.ts, model_out.density, model_out.channels
)
# 4. Clean up results that do not intersect with the volume.
transmittance = torch.where(vrange.intersected, transmittance, torch.ones_like(transmittance))
channels = torch.where(vrange.intersected, channels, torch.zeros_like(channels))
# 5. integration to infinity (e.g. [t[-1], math.inf]) that is evaluated by the void_model (i.e. we consider this space to be empty).
channels = channels + transmittance * self.void(origin)
weighted_sampler = ImportanceRaySampler(vrange, ts=model_out.ts, weights=weights)
return channels, weighted_sampler, model_out
@torch.no_grad()
def decode_to_image(
self,
latents,
device,
size: int = 64,
ray_batch_size: int = 4096,
n_coarse_samples=64,
n_fine_samples=128,
):
# project the parameters from the generated latents
projected_params = self.params_proj(latents)
# update the mlp layers of the renderer
for name, param in self.mlp.state_dict().items():
if f"nerstf.{name}" in projected_params.keys():
param.copy_(projected_params[f"nerstf.{name}"].squeeze(0))
# create cameras object
camera = create_pan_cameras(size)
rays = camera.camera_rays
rays = rays.to(device)
n_batches = rays.shape[1] // ray_batch_size
coarse_sampler = StratifiedRaySampler()
images = []
for idx in range(n_batches):
rays_batch = rays[:, idx * ray_batch_size : (idx + 1) * ray_batch_size]
# render rays with coarse, stratified samples.
_, fine_sampler, coarse_model_out = self.render_rays(rays_batch, coarse_sampler, n_coarse_samples)
# Then, render with additional importance-weighted ray samples.
channels, _, _ = self.render_rays(
rays_batch, fine_sampler, n_fine_samples, prev_model_out=coarse_model_out
)
images.append(channels)
images = torch.cat(images, dim=1)
images = images.view(*camera.shape, camera.height, camera.width, -1).squeeze(0)
return images
@torch.no_grad()
def decode_to_mesh(
self,
latents,
device,
grid_size: int = 128,
query_batch_size: int = 4096,
texture_channels: Tuple = ("R", "G", "B"),
):
# 1. project the parameters from the generated latents
projected_params = self.params_proj(latents)
# 2. update the mlp layers of the renderer
for name, param in self.mlp.state_dict().items():
if f"nerstf.{name}" in projected_params.keys():
param.copy_(projected_params[f"nerstf.{name}"].squeeze(0))
# 3. decoding with STF rendering
# 3.1 query the SDF values at vertices along a regular 128**3 grid
query_points = volume_query_points(self.volume, grid_size)
query_positions = query_points[None].repeat(1, 1, 1).to(device=device, dtype=self.mlp.dtype)
fields = []
for idx in range(0, query_positions.shape[1], query_batch_size):
query_batch = query_positions[:, idx : idx + query_batch_size]
model_out = self.mlp(
position=query_batch, direction=None, ts=None, nerf_level="fine", rendering_mode="stf"
)
fields.append(model_out.signed_distance)
# predicted SDF values
fields = torch.cat(fields, dim=1)
fields = fields.float()
assert (
len(fields.shape) == 3 and fields.shape[-1] == 1
), f"expected [meta_batch x inner_batch] SDF results, but got {fields.shape}"
fields = fields.reshape(1, *([grid_size] * 3))
# create grid 128 x 128 x 128
# - force a negative border around the SDFs to close off all the models.
full_grid = torch.zeros(
1,
grid_size + 2,
grid_size + 2,
grid_size + 2,
device=fields.device,
dtype=fields.dtype,
)
full_grid.fill_(-1.0)
full_grid[:, 1:-1, 1:-1, 1:-1] = fields
fields = full_grid
# apply a differentiable implementation of Marching Cubes to construct meshs
raw_meshes = []
mesh_mask = []
for field in fields:
raw_mesh = self.mesh_decoder(field, self.volume.bbox_min, self.volume.bbox_max - self.volume.bbox_min)
mesh_mask.append(True)
raw_meshes.append(raw_mesh)
mesh_mask = torch.tensor(mesh_mask, device=fields.device)
max_vertices = max(len(m.verts) for m in raw_meshes)
# 3.2. query the texture color head at each vertex of the resulting mesh.
texture_query_positions = torch.stack(
[m.verts[torch.arange(0, max_vertices) % len(m.verts)] for m in raw_meshes],
dim=0,
)
texture_query_positions = texture_query_positions.to(device=device, dtype=self.mlp.dtype)
textures = []
for idx in range(0, texture_query_positions.shape[1], query_batch_size):
query_batch = texture_query_positions[:, idx : idx + query_batch_size]
texture_model_out = self.mlp(
position=query_batch, direction=None, ts=None, nerf_level="fine", rendering_mode="stf"
)
textures.append(texture_model_out.channels)
# predict texture color
textures = torch.cat(textures, dim=1)
textures = _convert_srgb_to_linear(textures)
textures = textures.float()
# 3.3 augument the mesh with texture data
assert len(textures.shape) == 3 and textures.shape[-1] == len(
texture_channels
), f"expected [meta_batch x inner_batch x texture_channels] field results, but got {textures.shape}"
for m, texture in zip(raw_meshes, textures):
texture = texture[: len(m.verts)]
m.vertex_channels = dict(zip(texture_channels, texture.unbind(-1)))
return raw_meshes[0]