PowerPaint / model /diffusers_c /pipelines /consistency_models /pipeline_consistency_models.py
sachinkidzure's picture
initial (#1)
135b069 verified
raw
history blame
12.4 kB
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, List, Optional, Union
import torch
from ...models import UNet2DModel
from ...schedulers import CMStochasticIterativeScheduler
from ...utils import (
logging,
replace_example_docstring,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import ConsistencyModelPipeline
>>> device = "cuda"
>>> # Load the cd_imagenet64_l2 checkpoint.
>>> model_id_or_path = "openai/diffusers-cd_imagenet64_l2"
>>> pipe = ConsistencyModelPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16)
>>> pipe.to(device)
>>> # Onestep Sampling
>>> image = pipe(num_inference_steps=1).images[0]
>>> image.save("cd_imagenet64_l2_onestep_sample.png")
>>> # Onestep sampling, class-conditional image generation
>>> # ImageNet-64 class label 145 corresponds to king penguins
>>> image = pipe(num_inference_steps=1, class_labels=145).images[0]
>>> image.save("cd_imagenet64_l2_onestep_sample_penguin.png")
>>> # Multistep sampling, class-conditional image generation
>>> # Timesteps can be explicitly specified; the particular timesteps below are from the original Github repo:
>>> # https://github.com/openai/consistency_models/blob/main/scripts/launch.sh#L77
>>> image = pipe(num_inference_steps=None, timesteps=[22, 0], class_labels=145).images[0]
>>> image.save("cd_imagenet64_l2_multistep_sample_penguin.png")
```
"""
class ConsistencyModelPipeline(DiffusionPipeline):
r"""
Pipeline for unconditional or class-conditional image generation.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Args:
unet ([`UNet2DModel`]):
A `UNet2DModel` to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Currently only
compatible with [`CMStochasticIterativeScheduler`].
"""
model_cpu_offload_seq = "unet"
def __init__(self, unet: UNet2DModel, scheduler: CMStochasticIterativeScheduler) -> None:
super().__init__()
self.register_modules(
unet=unet,
scheduler=scheduler,
)
self.safety_checker = None
def prepare_latents(self, batch_size, num_channels, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels, height, width)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device=device, dtype=dtype)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
# Follows diffusers.VaeImageProcessor.postprocess
def postprocess_image(self, sample: torch.FloatTensor, output_type: str = "pil"):
if output_type not in ["pt", "np", "pil"]:
raise ValueError(
f"output_type={output_type} is not supported. Make sure to choose one of ['pt', 'np', or 'pil']"
)
# Equivalent to diffusers.VaeImageProcessor.denormalize
sample = (sample / 2 + 0.5).clamp(0, 1)
if output_type == "pt":
return sample
# Equivalent to diffusers.VaeImageProcessor.pt_to_numpy
sample = sample.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "np":
return sample
# Output_type must be 'pil'
sample = self.numpy_to_pil(sample)
return sample
def prepare_class_labels(self, batch_size, device, class_labels=None):
if self.unet.config.num_class_embeds is not None:
if isinstance(class_labels, list):
class_labels = torch.tensor(class_labels, dtype=torch.int)
elif isinstance(class_labels, int):
assert batch_size == 1, "Batch size must be 1 if classes is an int"
class_labels = torch.tensor([class_labels], dtype=torch.int)
elif class_labels is None:
# Randomly generate batch_size class labels
# TODO: should use generator here? int analogue of randn_tensor is not exposed in ...utils
class_labels = torch.randint(0, self.unet.config.num_class_embeds, size=(batch_size,))
class_labels = class_labels.to(device)
else:
class_labels = None
return class_labels
def check_inputs(self, num_inference_steps, timesteps, latents, batch_size, img_size, callback_steps):
if num_inference_steps is None and timesteps is None:
raise ValueError("Exactly one of `num_inference_steps` or `timesteps` must be supplied.")
if num_inference_steps is not None and timesteps is not None:
logger.warning(
f"Both `num_inference_steps`: {num_inference_steps} and `timesteps`: {timesteps} are supplied;"
" `timesteps` will be used over `num_inference_steps`."
)
if latents is not None:
expected_shape = (batch_size, 3, img_size, img_size)
if latents.shape != expected_shape:
raise ValueError(f"The shape of latents is {latents.shape} but is expected to be {expected_shape}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
batch_size: int = 1,
class_labels: Optional[Union[torch.Tensor, List[int], int]] = None,
num_inference_steps: int = 1,
timesteps: List[int] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
):
r"""
Args:
batch_size (`int`, *optional*, defaults to 1):
The number of images to generate.
class_labels (`torch.Tensor` or `List[int]` or `int`, *optional*):
Optional class labels for conditioning class-conditional consistency models. Not used if the model is
not class-conditional.
num_inference_steps (`int`, *optional*, defaults to 1):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
timesteps are used. Must be in descending order.
generator (`torch.Generator`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
returned where the first element is a list with the generated images.
"""
# 0. Prepare call parameters
img_size = self.unet.config.sample_size
device = self._execution_device
# 1. Check inputs
self.check_inputs(num_inference_steps, timesteps, latents, batch_size, img_size, callback_steps)
# 2. Prepare image latents
# Sample image latents x_0 ~ N(0, sigma_0^2 * I)
sample = self.prepare_latents(
batch_size=batch_size,
num_channels=self.unet.config.in_channels,
height=img_size,
width=img_size,
dtype=self.unet.dtype,
device=device,
generator=generator,
latents=latents,
)
# 3. Handle class_labels for class-conditional models
class_labels = self.prepare_class_labels(batch_size, device, class_labels=class_labels)
# 4. Prepare timesteps
if timesteps is not None:
self.scheduler.set_timesteps(timesteps=timesteps, device=device)
timesteps = self.scheduler.timesteps
num_inference_steps = len(timesteps)
else:
self.scheduler.set_timesteps(num_inference_steps)
timesteps = self.scheduler.timesteps
# 5. Denoising loop
# Multistep sampling: implements Algorithm 1 in the paper
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
scaled_sample = self.scheduler.scale_model_input(sample, t)
model_output = self.unet(scaled_sample, t, class_labels=class_labels, return_dict=False)[0]
sample = self.scheduler.step(model_output, t, sample, generator=generator)[0]
# call the callback, if provided
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, sample)
# 6. Post-process image sample
image = self.postprocess_image(sample, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)