Spaces:
Paused
Paused
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# JAX implementation of VQGAN from taming-transformers https://github.com/CompVis/taming-transformers | |
import math | |
from functools import partial | |
from typing import Tuple | |
import flax | |
import flax.linen as nn | |
import jax | |
import jax.numpy as jnp | |
from flax.core.frozen_dict import FrozenDict | |
from ..configuration_utils import ConfigMixin, flax_register_to_config | |
from ..utils import BaseOutput | |
from .modeling_flax_utils import FlaxModelMixin | |
class FlaxDecoderOutput(BaseOutput): | |
""" | |
Output of decoding method. | |
Args: | |
sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)`): | |
The decoded output sample from the last layer of the model. | |
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`): | |
The `dtype` of the parameters. | |
""" | |
sample: jnp.ndarray | |
class FlaxAutoencoderKLOutput(BaseOutput): | |
""" | |
Output of AutoencoderKL encoding method. | |
Args: | |
latent_dist (`FlaxDiagonalGaussianDistribution`): | |
Encoded outputs of `Encoder` represented as the mean and logvar of `FlaxDiagonalGaussianDistribution`. | |
`FlaxDiagonalGaussianDistribution` allows for sampling latents from the distribution. | |
""" | |
latent_dist: "FlaxDiagonalGaussianDistribution" | |
class FlaxUpsample2D(nn.Module): | |
""" | |
Flax implementation of 2D Upsample layer | |
Args: | |
in_channels (`int`): | |
Input channels | |
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): | |
Parameters `dtype` | |
""" | |
in_channels: int | |
dtype: jnp.dtype = jnp.float32 | |
def setup(self): | |
self.conv = nn.Conv( | |
self.in_channels, | |
kernel_size=(3, 3), | |
strides=(1, 1), | |
padding=((1, 1), (1, 1)), | |
dtype=self.dtype, | |
) | |
def __call__(self, hidden_states): | |
batch, height, width, channels = hidden_states.shape | |
hidden_states = jax.image.resize( | |
hidden_states, | |
shape=(batch, height * 2, width * 2, channels), | |
method="nearest", | |
) | |
hidden_states = self.conv(hidden_states) | |
return hidden_states | |
class FlaxDownsample2D(nn.Module): | |
""" | |
Flax implementation of 2D Downsample layer | |
Args: | |
in_channels (`int`): | |
Input channels | |
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): | |
Parameters `dtype` | |
""" | |
in_channels: int | |
dtype: jnp.dtype = jnp.float32 | |
def setup(self): | |
self.conv = nn.Conv( | |
self.in_channels, | |
kernel_size=(3, 3), | |
strides=(2, 2), | |
padding="VALID", | |
dtype=self.dtype, | |
) | |
def __call__(self, hidden_states): | |
pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim | |
hidden_states = jnp.pad(hidden_states, pad_width=pad) | |
hidden_states = self.conv(hidden_states) | |
return hidden_states | |
class FlaxResnetBlock2D(nn.Module): | |
""" | |
Flax implementation of 2D Resnet Block. | |
Args: | |
in_channels (`int`): | |
Input channels | |
out_channels (`int`): | |
Output channels | |
dropout (:obj:`float`, *optional*, defaults to 0.0): | |
Dropout rate | |
groups (:obj:`int`, *optional*, defaults to `32`): | |
The number of groups to use for group norm. | |
use_nin_shortcut (:obj:`bool`, *optional*, defaults to `None`): | |
Whether to use `nin_shortcut`. This activates a new layer inside ResNet block | |
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): | |
Parameters `dtype` | |
""" | |
in_channels: int | |
out_channels: int = None | |
dropout: float = 0.0 | |
groups: int = 32 | |
use_nin_shortcut: bool = None | |
dtype: jnp.dtype = jnp.float32 | |
def setup(self): | |
out_channels = self.in_channels if self.out_channels is None else self.out_channels | |
self.norm1 = nn.GroupNorm(num_groups=self.groups, epsilon=1e-6) | |
self.conv1 = nn.Conv( | |
out_channels, | |
kernel_size=(3, 3), | |
strides=(1, 1), | |
padding=((1, 1), (1, 1)), | |
dtype=self.dtype, | |
) | |
self.norm2 = nn.GroupNorm(num_groups=self.groups, epsilon=1e-6) | |
self.dropout_layer = nn.Dropout(self.dropout) | |
self.conv2 = nn.Conv( | |
out_channels, | |
kernel_size=(3, 3), | |
strides=(1, 1), | |
padding=((1, 1), (1, 1)), | |
dtype=self.dtype, | |
) | |
use_nin_shortcut = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut | |
self.conv_shortcut = None | |
if use_nin_shortcut: | |
self.conv_shortcut = nn.Conv( | |
out_channels, | |
kernel_size=(1, 1), | |
strides=(1, 1), | |
padding="VALID", | |
dtype=self.dtype, | |
) | |
def __call__(self, hidden_states, deterministic=True): | |
residual = hidden_states | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = nn.swish(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
hidden_states = self.norm2(hidden_states) | |
hidden_states = nn.swish(hidden_states) | |
hidden_states = self.dropout_layer(hidden_states, deterministic) | |
hidden_states = self.conv2(hidden_states) | |
if self.conv_shortcut is not None: | |
residual = self.conv_shortcut(residual) | |
return hidden_states + residual | |
class FlaxAttentionBlock(nn.Module): | |
r""" | |
Flax Convolutional based multi-head attention block for diffusion-based VAE. | |
Parameters: | |
channels (:obj:`int`): | |
Input channels | |
num_head_channels (:obj:`int`, *optional*, defaults to `None`): | |
Number of attention heads | |
num_groups (:obj:`int`, *optional*, defaults to `32`): | |
The number of groups to use for group norm | |
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): | |
Parameters `dtype` | |
""" | |
channels: int | |
num_head_channels: int = None | |
num_groups: int = 32 | |
dtype: jnp.dtype = jnp.float32 | |
def setup(self): | |
self.num_heads = self.channels // self.num_head_channels if self.num_head_channels is not None else 1 | |
dense = partial(nn.Dense, self.channels, dtype=self.dtype) | |
self.group_norm = nn.GroupNorm(num_groups=self.num_groups, epsilon=1e-6) | |
self.query, self.key, self.value = dense(), dense(), dense() | |
self.proj_attn = dense() | |
def transpose_for_scores(self, projection): | |
new_projection_shape = projection.shape[:-1] + (self.num_heads, -1) | |
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D) | |
new_projection = projection.reshape(new_projection_shape) | |
# (B, T, H, D) -> (B, H, T, D) | |
new_projection = jnp.transpose(new_projection, (0, 2, 1, 3)) | |
return new_projection | |
def __call__(self, hidden_states): | |
residual = hidden_states | |
batch, height, width, channels = hidden_states.shape | |
hidden_states = self.group_norm(hidden_states) | |
hidden_states = hidden_states.reshape((batch, height * width, channels)) | |
query = self.query(hidden_states) | |
key = self.key(hidden_states) | |
value = self.value(hidden_states) | |
# transpose | |
query = self.transpose_for_scores(query) | |
key = self.transpose_for_scores(key) | |
value = self.transpose_for_scores(value) | |
# compute attentions | |
scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads)) | |
attn_weights = jnp.einsum("...qc,...kc->...qk", query * scale, key * scale) | |
attn_weights = nn.softmax(attn_weights, axis=-1) | |
# attend to values | |
hidden_states = jnp.einsum("...kc,...qk->...qc", value, attn_weights) | |
hidden_states = jnp.transpose(hidden_states, (0, 2, 1, 3)) | |
new_hidden_states_shape = hidden_states.shape[:-2] + (self.channels,) | |
hidden_states = hidden_states.reshape(new_hidden_states_shape) | |
hidden_states = self.proj_attn(hidden_states) | |
hidden_states = hidden_states.reshape((batch, height, width, channels)) | |
hidden_states = hidden_states + residual | |
return hidden_states | |
class FlaxDownEncoderBlock2D(nn.Module): | |
r""" | |
Flax Resnet blocks-based Encoder block for diffusion-based VAE. | |
Parameters: | |
in_channels (:obj:`int`): | |
Input channels | |
out_channels (:obj:`int`): | |
Output channels | |
dropout (:obj:`float`, *optional*, defaults to 0.0): | |
Dropout rate | |
num_layers (:obj:`int`, *optional*, defaults to 1): | |
Number of Resnet layer block | |
resnet_groups (:obj:`int`, *optional*, defaults to `32`): | |
The number of groups to use for the Resnet block group norm | |
add_downsample (:obj:`bool`, *optional*, defaults to `True`): | |
Whether to add downsample layer | |
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): | |
Parameters `dtype` | |
""" | |
in_channels: int | |
out_channels: int | |
dropout: float = 0.0 | |
num_layers: int = 1 | |
resnet_groups: int = 32 | |
add_downsample: bool = True | |
dtype: jnp.dtype = jnp.float32 | |
def setup(self): | |
resnets = [] | |
for i in range(self.num_layers): | |
in_channels = self.in_channels if i == 0 else self.out_channels | |
res_block = FlaxResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=self.out_channels, | |
dropout=self.dropout, | |
groups=self.resnet_groups, | |
dtype=self.dtype, | |
) | |
resnets.append(res_block) | |
self.resnets = resnets | |
if self.add_downsample: | |
self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype) | |
def __call__(self, hidden_states, deterministic=True): | |
for resnet in self.resnets: | |
hidden_states = resnet(hidden_states, deterministic=deterministic) | |
if self.add_downsample: | |
hidden_states = self.downsamplers_0(hidden_states) | |
return hidden_states | |
class FlaxUpDecoderBlock2D(nn.Module): | |
r""" | |
Flax Resnet blocks-based Decoder block for diffusion-based VAE. | |
Parameters: | |
in_channels (:obj:`int`): | |
Input channels | |
out_channels (:obj:`int`): | |
Output channels | |
dropout (:obj:`float`, *optional*, defaults to 0.0): | |
Dropout rate | |
num_layers (:obj:`int`, *optional*, defaults to 1): | |
Number of Resnet layer block | |
resnet_groups (:obj:`int`, *optional*, defaults to `32`): | |
The number of groups to use for the Resnet block group norm | |
add_upsample (:obj:`bool`, *optional*, defaults to `True`): | |
Whether to add upsample layer | |
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): | |
Parameters `dtype` | |
""" | |
in_channels: int | |
out_channels: int | |
dropout: float = 0.0 | |
num_layers: int = 1 | |
resnet_groups: int = 32 | |
add_upsample: bool = True | |
dtype: jnp.dtype = jnp.float32 | |
def setup(self): | |
resnets = [] | |
for i in range(self.num_layers): | |
in_channels = self.in_channels if i == 0 else self.out_channels | |
res_block = FlaxResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=self.out_channels, | |
dropout=self.dropout, | |
groups=self.resnet_groups, | |
dtype=self.dtype, | |
) | |
resnets.append(res_block) | |
self.resnets = resnets | |
if self.add_upsample: | |
self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype) | |
def __call__(self, hidden_states, deterministic=True): | |
for resnet in self.resnets: | |
hidden_states = resnet(hidden_states, deterministic=deterministic) | |
if self.add_upsample: | |
hidden_states = self.upsamplers_0(hidden_states) | |
return hidden_states | |
class FlaxUNetMidBlock2D(nn.Module): | |
r""" | |
Flax Unet Mid-Block module. | |
Parameters: | |
in_channels (:obj:`int`): | |
Input channels | |
dropout (:obj:`float`, *optional*, defaults to 0.0): | |
Dropout rate | |
num_layers (:obj:`int`, *optional*, defaults to 1): | |
Number of Resnet layer block | |
resnet_groups (:obj:`int`, *optional*, defaults to `32`): | |
The number of groups to use for the Resnet and Attention block group norm | |
num_attention_heads (:obj:`int`, *optional*, defaults to `1`): | |
Number of attention heads for each attention block | |
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): | |
Parameters `dtype` | |
""" | |
in_channels: int | |
dropout: float = 0.0 | |
num_layers: int = 1 | |
resnet_groups: int = 32 | |
num_attention_heads: int = 1 | |
dtype: jnp.dtype = jnp.float32 | |
def setup(self): | |
resnet_groups = self.resnet_groups if self.resnet_groups is not None else min(self.in_channels // 4, 32) | |
# there is always at least one resnet | |
resnets = [ | |
FlaxResnetBlock2D( | |
in_channels=self.in_channels, | |
out_channels=self.in_channels, | |
dropout=self.dropout, | |
groups=resnet_groups, | |
dtype=self.dtype, | |
) | |
] | |
attentions = [] | |
for _ in range(self.num_layers): | |
attn_block = FlaxAttentionBlock( | |
channels=self.in_channels, | |
num_head_channels=self.num_attention_heads, | |
num_groups=resnet_groups, | |
dtype=self.dtype, | |
) | |
attentions.append(attn_block) | |
res_block = FlaxResnetBlock2D( | |
in_channels=self.in_channels, | |
out_channels=self.in_channels, | |
dropout=self.dropout, | |
groups=resnet_groups, | |
dtype=self.dtype, | |
) | |
resnets.append(res_block) | |
self.resnets = resnets | |
self.attentions = attentions | |
def __call__(self, hidden_states, deterministic=True): | |
hidden_states = self.resnets[0](hidden_states, deterministic=deterministic) | |
for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
hidden_states = attn(hidden_states) | |
hidden_states = resnet(hidden_states, deterministic=deterministic) | |
return hidden_states | |
class FlaxEncoder(nn.Module): | |
r""" | |
Flax Implementation of VAE Encoder. | |
This model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module) | |
subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to | |
general usage and behavior. | |
Finally, this model supports inherent JAX features such as: | |
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) | |
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) | |
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) | |
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) | |
Parameters: | |
in_channels (:obj:`int`, *optional*, defaults to 3): | |
Input channels | |
out_channels (:obj:`int`, *optional*, defaults to 3): | |
Output channels | |
down_block_types (:obj:`Tuple[str]`, *optional*, defaults to `(DownEncoderBlock2D)`): | |
DownEncoder block type | |
block_out_channels (:obj:`Tuple[str]`, *optional*, defaults to `(64,)`): | |
Tuple containing the number of output channels for each block | |
layers_per_block (:obj:`int`, *optional*, defaults to `2`): | |
Number of Resnet layer for each block | |
norm_num_groups (:obj:`int`, *optional*, defaults to `32`): | |
norm num group | |
act_fn (:obj:`str`, *optional*, defaults to `silu`): | |
Activation function | |
double_z (:obj:`bool`, *optional*, defaults to `False`): | |
Whether to double the last output channels | |
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): | |
Parameters `dtype` | |
""" | |
in_channels: int = 3 | |
out_channels: int = 3 | |
down_block_types: Tuple[str] = ("DownEncoderBlock2D",) | |
block_out_channels: Tuple[int] = (64,) | |
layers_per_block: int = 2 | |
norm_num_groups: int = 32 | |
act_fn: str = "silu" | |
double_z: bool = False | |
dtype: jnp.dtype = jnp.float32 | |
def setup(self): | |
block_out_channels = self.block_out_channels | |
# in | |
self.conv_in = nn.Conv( | |
block_out_channels[0], | |
kernel_size=(3, 3), | |
strides=(1, 1), | |
padding=((1, 1), (1, 1)), | |
dtype=self.dtype, | |
) | |
# downsampling | |
down_blocks = [] | |
output_channel = block_out_channels[0] | |
for i, _ in enumerate(self.down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = FlaxDownEncoderBlock2D( | |
in_channels=input_channel, | |
out_channels=output_channel, | |
num_layers=self.layers_per_block, | |
resnet_groups=self.norm_num_groups, | |
add_downsample=not is_final_block, | |
dtype=self.dtype, | |
) | |
down_blocks.append(down_block) | |
self.down_blocks = down_blocks | |
# middle | |
self.mid_block = FlaxUNetMidBlock2D( | |
in_channels=block_out_channels[-1], | |
resnet_groups=self.norm_num_groups, | |
num_attention_heads=None, | |
dtype=self.dtype, | |
) | |
# end | |
conv_out_channels = 2 * self.out_channels if self.double_z else self.out_channels | |
self.conv_norm_out = nn.GroupNorm(num_groups=self.norm_num_groups, epsilon=1e-6) | |
self.conv_out = nn.Conv( | |
conv_out_channels, | |
kernel_size=(3, 3), | |
strides=(1, 1), | |
padding=((1, 1), (1, 1)), | |
dtype=self.dtype, | |
) | |
def __call__(self, sample, deterministic: bool = True): | |
# in | |
sample = self.conv_in(sample) | |
# downsampling | |
for block in self.down_blocks: | |
sample = block(sample, deterministic=deterministic) | |
# middle | |
sample = self.mid_block(sample, deterministic=deterministic) | |
# end | |
sample = self.conv_norm_out(sample) | |
sample = nn.swish(sample) | |
sample = self.conv_out(sample) | |
return sample | |
class FlaxDecoder(nn.Module): | |
r""" | |
Flax Implementation of VAE Decoder. | |
This model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module) | |
subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to | |
general usage and behavior. | |
Finally, this model supports inherent JAX features such as: | |
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) | |
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) | |
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) | |
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) | |
Parameters: | |
in_channels (:obj:`int`, *optional*, defaults to 3): | |
Input channels | |
out_channels (:obj:`int`, *optional*, defaults to 3): | |
Output channels | |
up_block_types (:obj:`Tuple[str]`, *optional*, defaults to `(UpDecoderBlock2D)`): | |
UpDecoder block type | |
block_out_channels (:obj:`Tuple[str]`, *optional*, defaults to `(64,)`): | |
Tuple containing the number of output channels for each block | |
layers_per_block (:obj:`int`, *optional*, defaults to `2`): | |
Number of Resnet layer for each block | |
norm_num_groups (:obj:`int`, *optional*, defaults to `32`): | |
norm num group | |
act_fn (:obj:`str`, *optional*, defaults to `silu`): | |
Activation function | |
double_z (:obj:`bool`, *optional*, defaults to `False`): | |
Whether to double the last output channels | |
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): | |
parameters `dtype` | |
""" | |
in_channels: int = 3 | |
out_channels: int = 3 | |
up_block_types: Tuple[str] = ("UpDecoderBlock2D",) | |
block_out_channels: int = (64,) | |
layers_per_block: int = 2 | |
norm_num_groups: int = 32 | |
act_fn: str = "silu" | |
dtype: jnp.dtype = jnp.float32 | |
def setup(self): | |
block_out_channels = self.block_out_channels | |
# z to block_in | |
self.conv_in = nn.Conv( | |
block_out_channels[-1], | |
kernel_size=(3, 3), | |
strides=(1, 1), | |
padding=((1, 1), (1, 1)), | |
dtype=self.dtype, | |
) | |
# middle | |
self.mid_block = FlaxUNetMidBlock2D( | |
in_channels=block_out_channels[-1], | |
resnet_groups=self.norm_num_groups, | |
num_attention_heads=None, | |
dtype=self.dtype, | |
) | |
# upsampling | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
output_channel = reversed_block_out_channels[0] | |
up_blocks = [] | |
for i, _ in enumerate(self.up_block_types): | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
up_block = FlaxUpDecoderBlock2D( | |
in_channels=prev_output_channel, | |
out_channels=output_channel, | |
num_layers=self.layers_per_block + 1, | |
resnet_groups=self.norm_num_groups, | |
add_upsample=not is_final_block, | |
dtype=self.dtype, | |
) | |
up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
self.up_blocks = up_blocks | |
# end | |
self.conv_norm_out = nn.GroupNorm(num_groups=self.norm_num_groups, epsilon=1e-6) | |
self.conv_out = nn.Conv( | |
self.out_channels, | |
kernel_size=(3, 3), | |
strides=(1, 1), | |
padding=((1, 1), (1, 1)), | |
dtype=self.dtype, | |
) | |
def __call__(self, sample, deterministic: bool = True): | |
# z to block_in | |
sample = self.conv_in(sample) | |
# middle | |
sample = self.mid_block(sample, deterministic=deterministic) | |
# upsampling | |
for block in self.up_blocks: | |
sample = block(sample, deterministic=deterministic) | |
sample = self.conv_norm_out(sample) | |
sample = nn.swish(sample) | |
sample = self.conv_out(sample) | |
return sample | |
class FlaxDiagonalGaussianDistribution(object): | |
def __init__(self, parameters, deterministic=False): | |
# Last axis to account for channels-last | |
self.mean, self.logvar = jnp.split(parameters, 2, axis=-1) | |
self.logvar = jnp.clip(self.logvar, -30.0, 20.0) | |
self.deterministic = deterministic | |
self.std = jnp.exp(0.5 * self.logvar) | |
self.var = jnp.exp(self.logvar) | |
if self.deterministic: | |
self.var = self.std = jnp.zeros_like(self.mean) | |
def sample(self, key): | |
return self.mean + self.std * jax.random.normal(key, self.mean.shape) | |
def kl(self, other=None): | |
if self.deterministic: | |
return jnp.array([0.0]) | |
if other is None: | |
return 0.5 * jnp.sum(self.mean**2 + self.var - 1.0 - self.logvar, axis=[1, 2, 3]) | |
return 0.5 * jnp.sum( | |
jnp.square(self.mean - other.mean) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar, | |
axis=[1, 2, 3], | |
) | |
def nll(self, sample, axis=[1, 2, 3]): | |
if self.deterministic: | |
return jnp.array([0.0]) | |
logtwopi = jnp.log(2.0 * jnp.pi) | |
return 0.5 * jnp.sum(logtwopi + self.logvar + jnp.square(sample - self.mean) / self.var, axis=axis) | |
def mode(self): | |
return self.mean | |
class FlaxAutoencoderKL(nn.Module, FlaxModelMixin, ConfigMixin): | |
r""" | |
Flax implementation of a VAE model with KL loss for decoding latent representations. | |
This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for it's generic methods | |
implemented for all models (such as downloading or saving). | |
This model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module) | |
subclass. Use it as a regular Flax Linen module and refer to the Flax documentation for all matter related to its | |
general usage and behavior. | |
Inherent JAX features such as the following are supported: | |
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) | |
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) | |
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) | |
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) | |
Parameters: | |
in_channels (`int`, *optional*, defaults to 3): | |
Number of channels in the input image. | |
out_channels (`int`, *optional*, defaults to 3): | |
Number of channels in the output. | |
down_block_types (`Tuple[str]`, *optional*, defaults to `(DownEncoderBlock2D)`): | |
Tuple of downsample block types. | |
up_block_types (`Tuple[str]`, *optional*, defaults to `(UpDecoderBlock2D)`): | |
Tuple of upsample block types. | |
block_out_channels (`Tuple[str]`, *optional*, defaults to `(64,)`): | |
Tuple of block output channels. | |
layers_per_block (`int`, *optional*, defaults to `2`): | |
Number of ResNet layer for each block. | |
act_fn (`str`, *optional*, defaults to `silu`): | |
The activation function to use. | |
latent_channels (`int`, *optional*, defaults to `4`): | |
Number of channels in the latent space. | |
norm_num_groups (`int`, *optional*, defaults to `32`): | |
The number of groups for normalization. | |
sample_size (`int`, *optional*, defaults to 32): | |
Sample input size. | |
scaling_factor (`float`, *optional*, defaults to 0.18215): | |
The component-wise standard deviation of the trained latent space computed using the first batch of the | |
training set. This is used to scale the latent space to have unit variance when training the diffusion | |
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the | |
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 | |
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image | |
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. | |
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`): | |
The `dtype` of the parameters. | |
""" | |
in_channels: int = 3 | |
out_channels: int = 3 | |
down_block_types: Tuple[str] = ("DownEncoderBlock2D",) | |
up_block_types: Tuple[str] = ("UpDecoderBlock2D",) | |
block_out_channels: Tuple[int] = (64,) | |
layers_per_block: int = 1 | |
act_fn: str = "silu" | |
latent_channels: int = 4 | |
norm_num_groups: int = 32 | |
sample_size: int = 32 | |
scaling_factor: float = 0.18215 | |
dtype: jnp.dtype = jnp.float32 | |
def setup(self): | |
self.encoder = FlaxEncoder( | |
in_channels=self.config.in_channels, | |
out_channels=self.config.latent_channels, | |
down_block_types=self.config.down_block_types, | |
block_out_channels=self.config.block_out_channels, | |
layers_per_block=self.config.layers_per_block, | |
act_fn=self.config.act_fn, | |
norm_num_groups=self.config.norm_num_groups, | |
double_z=True, | |
dtype=self.dtype, | |
) | |
self.decoder = FlaxDecoder( | |
in_channels=self.config.latent_channels, | |
out_channels=self.config.out_channels, | |
up_block_types=self.config.up_block_types, | |
block_out_channels=self.config.block_out_channels, | |
layers_per_block=self.config.layers_per_block, | |
norm_num_groups=self.config.norm_num_groups, | |
act_fn=self.config.act_fn, | |
dtype=self.dtype, | |
) | |
self.quant_conv = nn.Conv( | |
2 * self.config.latent_channels, | |
kernel_size=(1, 1), | |
strides=(1, 1), | |
padding="VALID", | |
dtype=self.dtype, | |
) | |
self.post_quant_conv = nn.Conv( | |
self.config.latent_channels, | |
kernel_size=(1, 1), | |
strides=(1, 1), | |
padding="VALID", | |
dtype=self.dtype, | |
) | |
def init_weights(self, rng: jax.Array) -> FrozenDict: | |
# init input tensors | |
sample_shape = (1, self.in_channels, self.sample_size, self.sample_size) | |
sample = jnp.zeros(sample_shape, dtype=jnp.float32) | |
params_rng, dropout_rng, gaussian_rng = jax.random.split(rng, 3) | |
rngs = {"params": params_rng, "dropout": dropout_rng, "gaussian": gaussian_rng} | |
return self.init(rngs, sample)["params"] | |
def encode(self, sample, deterministic: bool = True, return_dict: bool = True): | |
sample = jnp.transpose(sample, (0, 2, 3, 1)) | |
hidden_states = self.encoder(sample, deterministic=deterministic) | |
moments = self.quant_conv(hidden_states) | |
posterior = FlaxDiagonalGaussianDistribution(moments) | |
if not return_dict: | |
return (posterior,) | |
return FlaxAutoencoderKLOutput(latent_dist=posterior) | |
def decode(self, latents, deterministic: bool = True, return_dict: bool = True): | |
if latents.shape[-1] != self.config.latent_channels: | |
latents = jnp.transpose(latents, (0, 2, 3, 1)) | |
hidden_states = self.post_quant_conv(latents) | |
hidden_states = self.decoder(hidden_states, deterministic=deterministic) | |
hidden_states = jnp.transpose(hidden_states, (0, 3, 1, 2)) | |
if not return_dict: | |
return (hidden_states,) | |
return FlaxDecoderOutput(sample=hidden_states) | |
def __call__(self, sample, sample_posterior=False, deterministic: bool = True, return_dict: bool = True): | |
posterior = self.encode(sample, deterministic=deterministic, return_dict=return_dict) | |
if sample_posterior: | |
rng = self.make_rng("gaussian") | |
hidden_states = posterior.latent_dist.sample(rng) | |
else: | |
hidden_states = posterior.latent_dist.mode() | |
sample = self.decode(hidden_states, return_dict=return_dict).sample | |
if not return_dict: | |
return (sample,) | |
return FlaxDecoderOutput(sample=sample) | |