File size: 17,049 Bytes
135b069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ef12bf
 
 
 
135b069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ef12bf
 
 
 
135b069
4ef12bf
 
135b069
 
 
 
4ef12bf
 
 
135b069
 
 
 
 
4ef12bf
 
 
 
 
135b069
 
 
 
 
 
 
 
 
 
 
 
 
 
4ef12bf
 
 
135b069
 
 
 
 
4ef12bf
 
135b069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ef12bf
 
 
 
135b069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ef12bf
 
 
 
135b069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4adf5b1
135b069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ef12bf
 
f3e1f15
4ef12bf
 
 
 
 
 
f3e1f15
4ef12bf
 
 
 
 
 
f3e1f15
135b069
 
 
 
4ef12bf
 
f3e1f15
135b069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ef12bf
 
 
 
135b069
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import os
import random

import gradio as gr
import numpy as np
import torch
from PIL import Image, ImageFilter
from transformers import CLIPTextModel

from diffusers import UniPCMultistepScheduler
from model.BrushNet_CA import BrushNetModel
from model.diffusers_c.models import UNet2DConditionModel
from pipeline.pipeline_PowerPaint_Brushnet_CA import StableDiffusionPowerPaintBrushNetPipeline
from utils.utils import TokenizerWrapper, add_tokens


base_path = "./PowerPaint_v2"
os.system("apt install git")
os.system("apt install git-lfs")
os.system(f"git lfs clone https://code.openxlab.org.cn/zhuangjunhao/PowerPaint_v2.git {base_path}")
os.system(f"cd {base_path} && git lfs pull")
os.system("cd ..")
torch.set_grad_enabled(False)
context_prompt = ""
context_negative_prompt = ""
base_model_path = "./PowerPaint_v2/realisticVisionV60B1_v51VAE/"
dtype = torch.float16
unet = UNet2DConditionModel.from_pretrained(
    "runwayml/stable-diffusion-v1-5", subfolder="unet", revision=None, torch_dtype=dtype
)
text_encoder_brushnet = CLIPTextModel.from_pretrained(
    "runwayml/stable-diffusion-v1-5", subfolder="text_encoder", revision=None, torch_dtype=dtype
)
brushnet = BrushNetModel.from_unet(unet)
global pipe
pipe = StableDiffusionPowerPaintBrushNetPipeline.from_pretrained(
    base_model_path,
    brushnet=brushnet,
    text_encoder_brushnet=text_encoder_brushnet,
    torch_dtype=dtype,
    low_cpu_mem_usage=False,
    safety_checker=None,
)
pipe.unet = UNet2DConditionModel.from_pretrained(base_model_path, subfolder="unet", revision=None, torch_dtype=dtype)
pipe.tokenizer = TokenizerWrapper(from_pretrained=base_model_path, subfolder="tokenizer", revision=None)
add_tokens(
    tokenizer=pipe.tokenizer,
    text_encoder=pipe.text_encoder_brushnet,
    placeholder_tokens=["P_ctxt", "P_shape", "P_obj"],
    initialize_tokens=["a", "a", "a"],
    num_vectors_per_token=10,
)
from safetensors.torch import load_model


load_model(pipe.brushnet, "./PowerPaint_v2/PowerPaint_Brushnet/diffusion_pytorch_model.safetensors")

pipe.text_encoder_brushnet.load_state_dict(
    torch.load("./PowerPaint_v2/PowerPaint_Brushnet/pytorch_model.bin"), strict=False
)

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

pipe.enable_model_cpu_offload()
global current_control
current_control = "canny"
# controlnet_conditioning_scale = 0.8


def set_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)


def add_task(control_type):
    # print(control_type)
    if control_type == "object-removal":
        promptA = "P_ctxt"
        promptB = "P_ctxt"
        negative_promptA = "P_obj"
        negative_promptB = "P_obj"
    elif control_type == "context-aware":
        promptA = "P_ctxt"
        promptB = "P_ctxt"
        negative_promptA = ""
        negative_promptB = ""
    elif control_type == "shape-guided":
        promptA = "P_shape"
        promptB = "P_ctxt"
        negative_promptA = "P_shape"
        negative_promptB = "P_ctxt"
    elif control_type == "image-outpainting":
        promptA = "P_ctxt"
        promptB = "P_ctxt"
        negative_promptA = "P_obj"
        negative_promptB = "P_obj"
    else:
        promptA = "P_obj"
        promptB = "P_obj"
        negative_promptA = "P_obj"
        negative_promptB = "P_obj"

    return promptA, promptB, negative_promptA, negative_promptB


def predict(
    input_image,
    prompt,
    fitting_degree,
    ddim_steps,
    scale,
    seed,
    negative_prompt,
    task,
    left_expansion_ratio,
    right_expansion_ratio,
    top_expansion_ratio,
    bottom_expansion_ratio,
):
    size1, size2 = input_image["image"].convert("RGB").size

    if task != "image-outpainting":
        if size1 < size2:
            input_image["image"] = input_image["image"].convert("RGB").resize((640, int(size2 / size1 * 640)))
        else:
            input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 640), 640))
    else:
        if size1 < size2:
            input_image["image"] = input_image["image"].convert("RGB").resize((512, int(size2 / size1 * 512)))
        else:
            input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 512), 512))

    if task == "image-outpainting" or task == "context-aware":
        prompt = prompt + " empty scene"
    if task == "object-removal":
        prompt = prompt + " empty scene blur"

    if (
        left_expansion_ratio is not None and right_expansion_ratio is not None
        and top_expansion_ratio is not None and bottom_expansion_ratio is not None
    ):
        o_W, o_H = input_image["image"].convert("RGB").size
        c_W = int((1 + left_expansion_ratio + right_expansion_ratio) * o_W)
        c_H = int((1 + top_expansion_ratio + bottom_expansion_ratio) * o_H)

        expand_img = np.ones((c_H, c_W, 3), dtype=np.uint8) * 127
        original_img = np.array(input_image["image"])
        expand_img[
            int(top_expansion_ratio * o_H):int(top_expansion_ratio * o_H) + o_H,
            int(left_expansion_ratio * o_W):int(left_expansion_ratio * o_W) + o_W,
            :
        ] = original_img

        blurry_gap = 10

        expand_mask = np.ones((c_H, c_W, 3), dtype=np.uint8) * 255
        expand_mask[
            int(top_expansion_ratio * o_H) + blurry_gap:int(top_expansion_ratio * o_H) + o_H - blurry_gap,
            int(left_expansion_ratio * o_W) + blurry_gap:int(left_expansion_ratio * o_W) + o_W - blurry_gap,
            :
        ] = 0

        input_image["image"] = Image.fromarray(expand_img)
        input_image["mask"] = Image.fromarray(expand_mask)

    promptA, promptB, negative_promptA, negative_promptB = add_task(task)
    img = np.array(input_image["image"].convert("RGB"))

    W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
    H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
    input_image["image"] = input_image["image"].resize((H, W))
    input_image["mask"] = input_image["mask"].resize((H, W))

    np_inpimg = np.array(input_image["image"])
    np_inmask = np.array(input_image["mask"]) / 255.0
    if len(np_inmask.shape)==2:
      np_inmask = np.expand_dims(np_inmask, axis=-1)
    # return np_inpimg, np_inmask

    np_inpimg = np_inpimg * (1 - np_inmask)

    input_image["image"] = Image.fromarray(np_inpimg.astype(np.uint8)).convert("RGB")


    # return input_image
    set_seed(seed)
    global pipe
    result = pipe(
        promptA=promptA,
        promptB=promptB,
        promptU=prompt,
        tradoff=fitting_degree,
        tradoff_nag=fitting_degree,
        image=input_image["image"].convert("RGB"),
        mask=input_image["mask"].convert("RGB"),
        num_inference_steps=ddim_steps,
        generator=torch.Generator("cuda").manual_seed(seed),
        brushnet_conditioning_scale=1.0,
        negative_promptA=negative_promptA,
        negative_promptB=negative_promptB,
        negative_promptU=negative_prompt,
        guidance_scale=scale,
        width=H,
        height=W,
    ).images[0]
    mask_np = np.array(input_image["mask"].convert("RGB"))
    red = np.array(result).astype("float") * 1
    red[:, :, 0] = 180.0
    red[:, :, 2] = 0
    red[:, :, 1] = 0
    result_m = np.array(result)
    result_m = Image.fromarray(
        (
            result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red
        ).astype("uint8")
    )
    m_img = input_image["mask"].convert("RGB").filter(ImageFilter.GaussianBlur(radius=3))
    m_img = np.asarray(m_img) / 255.0
    img_np = np.asarray(input_image["image"].convert("RGB")) / 255.0
    ours_np = np.asarray(result) / 255.0
    ours_np = ours_np * m_img + (1 - m_img) * img_np
    result_paste = Image.fromarray(np.uint8(ours_np * 255))

    dict_res = [input_image["mask"].convert("RGB"), result_m]

    dict_out = [result]

    return dict_out, dict_res


def infer(
    input_image,
    text_guided_prompt,
    text_guided_negative_prompt,
    shape_guided_prompt,
    shape_guided_negative_prompt,
    fitting_degree,
    ddim_steps,
    scale,
    seed,
    task,
    left_expansion_ratio,
    right_expansion_ratio,
    top_expansion_ratio,
    bottom_expansion_ratio,
    outpaint_prompt,
    outpaint_negative_prompt,
    removal_prompt,
    removal_negative_prompt,
    context_prompt,
    context_negative_prompt,
):
    if task == "text-guided":
        prompt = text_guided_prompt
        negative_prompt = text_guided_negative_prompt
    elif task == "shape-guided":
        prompt = shape_guided_prompt
        negative_prompt = shape_guided_negative_prompt
    elif task == "object-removal":
        prompt = removal_prompt
        negative_prompt = removal_negative_prompt
    elif task == "context-aware":
        prompt = context_prompt
        negative_prompt = context_negative_prompt
    elif task == "image-outpainting":
        prompt = outpaint_prompt
        negative_prompt = outpaint_negative_prompt
        return predict(
            input_image,
            prompt,
            fitting_degree,
            ddim_steps,
            scale,
            seed,
            negative_prompt,
            task,
            left_expansion_ratio,
            right_expansion_ratio,
            top_expansion_ratio,
            bottom_expansion_ratio
        )
    else:
        task = "text-guided"
        prompt = text_guided_prompt
        negative_prompt = text_guided_negative_prompt

    return predict(input_image, prompt, fitting_degree, ddim_steps, scale, seed, negative_prompt, task, None, None)


def select_tab_text_guided():
    return "text-guided"


def select_tab_object_removal():
    return "object-removal"


def select_tab_context_aware():
    return "context-aware"


def select_tab_image_outpainting():
    return "image-outpainting"


def select_tab_shape_guided():
    return "shape-guided"


with gr.Blocks(css="style.css") as demo:
    with gr.Row():
        gr.Markdown(
            "<div align='center'><font size='18'>PowerPaint: High-Quality Versatile Image Inpainting</font></div>"  # noqa
        )
    with gr.Row():
        gr.Markdown(
            "<div align='center'><font size='5'><a href='https://powerpaint.github.io/'>Project Page</a> &ensp;"  # noqa
            "<a href='https://arxiv.org/abs/2312.03594/'>Paper</a> &ensp;"
            "<a href='https://github.com/zhuang2002/PowerPaint'>Code</a> </font></div>"  # noqa
        )
    with gr.Row():
        gr.Markdown(
            "**Note:** Due to network-related factors, the page may experience occasional bugs! If the inpainting results deviate significantly from expectations, consider toggling between task options to refresh the content."  # noqa
        )
    # Attention: Due to network-related factors, the page may experience occasional bugs. If the inpainting results deviate significantly from expectations, consider toggling between task options to refresh the content.
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Input image and draw mask")
            input_image = gr.Image(label="Input Image", type="pil")

            task = gr.Radio(
                ["text-guided", "object-removal", "shape-guided", "image-outpainting"], show_label=False, visible=False
            )

            # Text-guided object inpainting
            with gr.Tab("Text-guided object inpainting") as tab_text_guided:
                enable_text_guided = gr.Checkbox(
                    label="Enable text-guided object inpainting", value=True, interactive=False
                )
                text_guided_prompt = gr.Textbox(label="Prompt")
                text_guided_negative_prompt = gr.Textbox(label="negative_prompt")
            tab_text_guided.select(fn=select_tab_text_guided, inputs=None, outputs=task)

            # Object removal inpainting
            with gr.Tab("Object removal inpainting") as tab_object_removal:
                enable_object_removal = gr.Checkbox(
                    label="Enable object removal inpainting",
                    value=True,
                    info="The recommended configuration for the Guidance Scale is 10 or higher. \
                    If undesired objects appear in the masked area, \
                    you can address this by specifically increasing the Guidance Scale.",
                    interactive=False,
                )
                removal_prompt = gr.Textbox(label="Prompt")
                removal_negative_prompt = gr.Textbox(label="negative_prompt")
                context_prompt = removal_prompt
                context_negative_prompt = removal_negative_prompt
            tab_object_removal.select(fn=select_tab_object_removal, inputs=None, outputs=task)

            # Object image outpainting
            with gr.Tab("Image outpainting") as tab_image_outpainting:
                enable_object_removal = gr.Checkbox(
                    label="Enable image outpainting",
                    value=True,
                    info="The recommended configuration for the Guidance Scale is 15 or higher. \
                    If unwanted random objects appear in the extended image region, \
                        you can enhance the cleanliness of the extension area by increasing the Guidance Scale.",
                    interactive=False,
                )
                outpaint_prompt = gr.Textbox(label="Outpainting_prompt")
                outpaint_negative_prompt = gr.Textbox(label="Outpainting_negative_prompt")
                left_expansion_ratio = gr.Slider(
                    label="left expansion ratio",
                    minimum=0,
                    maximum=4,
                    step=0.05,
                    value=1,
                )
                right_expansion_ratio = gr.Slider(
                    label="right expansion ratio",
                    minimum=0,
                    maximum=4,
                    step=0.05,
                    value=1,
                )
                top_expansion_ratio = gr.Slider(
                    label="top expansion ratio",
                    minimum=0,
                    maximum=4,
                    step=0.05,
                    value=1,
                )
                bottom_expansion_ratio = gr.Slider(
                    label="bottom expansion ratio",
                    minimum=0,
                    maximum=4,
                    step=0.05,
                    value=1,
                )
            tab_image_outpainting.select(fn=select_tab_image_outpainting, inputs=None, outputs=task)

            # Shape-guided object inpainting
            with gr.Tab("Shape-guided object inpainting") as tab_shape_guided:
                enable_shape_guided = gr.Checkbox(
                    label="Enable shape-guided object inpainting", value=True, interactive=False
                )
                shape_guided_prompt = gr.Textbox(label="shape_guided_prompt")
                shape_guided_negative_prompt = gr.Textbox(label="shape_guided_negative_prompt")
                fitting_degree = gr.Slider(
                    label="fitting degree",
                    minimum=0.3,
                    maximum=1,
                    step=0.05,
                    value=1,
                )
            tab_shape_guided.select(fn=select_tab_shape_guided, inputs=None, outputs=task)

            run_button = gr.Button(label="Run")
            with gr.Accordion("Advanced options", open=False):
                ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=50, step=1)
                scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=45.0, value=12, step=0.1)
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=2147483647,
                    step=1,
                    randomize=True,
                )
        with gr.Column():
            gr.Markdown("### Inpainting result")
            inpaint_result = gr.Gallery(label="Generated images", show_label=False, columns=2)
            gr.Markdown("### Mask")
            gallery = gr.Gallery(label="Generated masks", show_label=False, columns=2)

    run_button.click(
        fn=infer,
        inputs=[
            input_image,
            text_guided_prompt,
            text_guided_negative_prompt,
            shape_guided_prompt,
            shape_guided_negative_prompt,
            fitting_degree,
            ddim_steps,
            scale,
            seed,
            task,
            left_expansion_ratio,
            right_expansion_ratio,
            top_expansion_ratio,
            bottom_expansion_ratio,
            outpaint_prompt,
            outpaint_negative_prompt,
            removal_prompt,
            removal_negative_prompt,
            context_prompt,
            context_negative_prompt,
        ],
        outputs=[inpaint_result, gallery],
    )

demo.queue()
demo.launch(share=False, server_name="0.0.0.0", server_port=7860)