File size: 8,729 Bytes
135b069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Copyright (c) 2023 Dominic Rampas MIT License
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import Dict, Union

import torch
import torch.nn as nn

from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
from ...models.attention_processor import (
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnProcessor,
)
from ...models.lora import LoRACompatibleConv, LoRACompatibleLinear
from ...models.modeling_utils import ModelMixin
from ...utils import USE_PEFT_BACKEND, is_torch_version
from .modeling_wuerstchen_common import AttnBlock, ResBlock, TimestepBlock, WuerstchenLayerNorm


class WuerstchenPrior(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
    unet_name = "prior"
    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(self, c_in=16, c=1280, c_cond=1024, c_r=64, depth=16, nhead=16, dropout=0.1):
        super().__init__()
        conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
        linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear

        self.c_r = c_r
        self.projection = conv_cls(c_in, c, kernel_size=1)
        self.cond_mapper = nn.Sequential(
            linear_cls(c_cond, c),
            nn.LeakyReLU(0.2),
            linear_cls(c, c),
        )

        self.blocks = nn.ModuleList()
        for _ in range(depth):
            self.blocks.append(ResBlock(c, dropout=dropout))
            self.blocks.append(TimestepBlock(c, c_r))
            self.blocks.append(AttnBlock(c, c, nhead, self_attn=True, dropout=dropout))
        self.out = nn.Sequential(
            WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-6),
            conv_cls(c, c_in * 2, kernel_size=1),
        )

        self.gradient_checkpointing = False
        self.set_default_attn_processor()

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

        self.set_attn_processor(processor)

    def _set_gradient_checkpointing(self, module, value=False):
        self.gradient_checkpointing = value

    def gen_r_embedding(self, r, max_positions=10000):
        r = r * max_positions
        half_dim = self.c_r // 2
        emb = math.log(max_positions) / (half_dim - 1)
        emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
        emb = r[:, None] * emb[None, :]
        emb = torch.cat([emb.sin(), emb.cos()], dim=1)
        if self.c_r % 2 == 1:  # zero pad
            emb = nn.functional.pad(emb, (0, 1), mode="constant")
        return emb.to(dtype=r.dtype)

    def forward(self, x, r, c):
        x_in = x
        x = self.projection(x)
        c_embed = self.cond_mapper(c)
        r_embed = self.gen_r_embedding(r)

        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            if is_torch_version(">=", "1.11.0"):
                for block in self.blocks:
                    if isinstance(block, AttnBlock):
                        x = torch.utils.checkpoint.checkpoint(
                            create_custom_forward(block), x, c_embed, use_reentrant=False
                        )
                    elif isinstance(block, TimestepBlock):
                        x = torch.utils.checkpoint.checkpoint(
                            create_custom_forward(block), x, r_embed, use_reentrant=False
                        )
                    else:
                        x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, use_reentrant=False)
            else:
                for block in self.blocks:
                    if isinstance(block, AttnBlock):
                        x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, c_embed)
                    elif isinstance(block, TimestepBlock):
                        x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, r_embed)
                    else:
                        x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x)
        else:
            for block in self.blocks:
                if isinstance(block, AttnBlock):
                    x = block(x, c_embed)
                elif isinstance(block, TimestepBlock):
                    x = block(x, r_embed)
                else:
                    x = block(x)
        a, b = self.out(x).chunk(2, dim=1)
        return (x_in - a) / ((1 - b).abs() + 1e-5)