File size: 21,855 Bytes
135b069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Callable, List, Optional, Union

import numpy as np
import PIL.Image
import torch
from PIL import Image
from transformers import (
    XLMRobertaTokenizer,
)

from ...models import UNet2DConditionModel, VQModel
from ...schedulers import DDIMScheduler
from ...utils import (
    logging,
    replace_example_docstring,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from .text_encoder import MultilingualCLIP


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> from diffusers import KandinskyImg2ImgPipeline, KandinskyPriorPipeline
        >>> from diffusers.utils import load_image
        >>> import torch

        >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(
        ...     "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
        ... )
        >>> pipe_prior.to("cuda")

        >>> prompt = "A red cartoon frog, 4k"
        >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)

        >>> pipe = KandinskyImg2ImgPipeline.from_pretrained(
        ...     "kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16
        ... )
        >>> pipe.to("cuda")

        >>> init_image = load_image(
        ...     "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
        ...     "/kandinsky/frog.png"
        ... )

        >>> image = pipe(
        ...     prompt,
        ...     image=init_image,
        ...     image_embeds=image_emb,
        ...     negative_image_embeds=zero_image_emb,
        ...     height=768,
        ...     width=768,
        ...     num_inference_steps=100,
        ...     strength=0.2,
        ... ).images

        >>> image[0].save("red_frog.png")
        ```
"""


def get_new_h_w(h, w, scale_factor=8):
    new_h = h // scale_factor**2
    if h % scale_factor**2 != 0:
        new_h += 1
    new_w = w // scale_factor**2
    if w % scale_factor**2 != 0:
        new_w += 1
    return new_h * scale_factor, new_w * scale_factor


def prepare_image(pil_image, w=512, h=512):
    pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1)
    arr = np.array(pil_image.convert("RGB"))
    arr = arr.astype(np.float32) / 127.5 - 1
    arr = np.transpose(arr, [2, 0, 1])
    image = torch.from_numpy(arr).unsqueeze(0)
    return image


class KandinskyImg2ImgPipeline(DiffusionPipeline):
    """
    Pipeline for image-to-image generation using Kandinsky

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        text_encoder ([`MultilingualCLIP`]):
            Frozen text-encoder.
        tokenizer ([`XLMRobertaTokenizer`]):
            Tokenizer of class
        scheduler ([`DDIMScheduler`]):
            A scheduler to be used in combination with `unet` to generate image latents.
        unet ([`UNet2DConditionModel`]):
            Conditional U-Net architecture to denoise the image embedding.
        movq ([`VQModel`]):
            MoVQ image encoder and decoder
    """

    model_cpu_offload_seq = "text_encoder->unet->movq"

    def __init__(
        self,
        text_encoder: MultilingualCLIP,
        movq: VQModel,
        tokenizer: XLMRobertaTokenizer,
        unet: UNet2DConditionModel,
        scheduler: DDIMScheduler,
    ):
        super().__init__()

        self.register_modules(
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            movq=movq,
        )
        self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1)

    def get_timesteps(self, num_inference_steps, strength, device):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start:]

        return timesteps, num_inference_steps - t_start

    def prepare_latents(self, latents, latent_timestep, shape, dtype, device, generator, scheduler):
        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(device)

        latents = latents * scheduler.init_noise_sigma

        shape = latents.shape
        noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)

        latents = self.add_noise(latents, noise, latent_timestep)
        return latents

    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
    ):
        batch_size = len(prompt) if isinstance(prompt, list) else 1
        # get prompt text embeddings
        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=77,
            truncation=True,
            return_attention_mask=True,
            add_special_tokens=True,
            return_tensors="pt",
        )

        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )

        text_input_ids = text_input_ids.to(device)
        text_mask = text_inputs.attention_mask.to(device)

        prompt_embeds, text_encoder_hidden_states = self.text_encoder(
            input_ids=text_input_ids, attention_mask=text_mask
        )

        prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
        text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
        text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)

        if do_classifier_free_guidance:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=77,
                truncation=True,
                return_attention_mask=True,
                add_special_tokens=True,
                return_tensors="pt",
            )
            uncond_text_input_ids = uncond_input.input_ids.to(device)
            uncond_text_mask = uncond_input.attention_mask.to(device)

            negative_prompt_embeds, uncond_text_encoder_hidden_states = self.text_encoder(
                input_ids=uncond_text_input_ids, attention_mask=uncond_text_mask
            )

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method

            seq_len = negative_prompt_embeds.shape[1]
            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len)

            seq_len = uncond_text_encoder_hidden_states.shape[1]
            uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
            uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
                batch_size * num_images_per_prompt, seq_len, -1
            )
            uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)

            # done duplicates

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
            text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])

            text_mask = torch.cat([uncond_text_mask, text_mask])

        return prompt_embeds, text_encoder_hidden_states, text_mask

    #  add_noise method to overwrite the one in schedule because it use a different beta schedule for adding noise vs sampling
    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
        betas = torch.linspace(0.0001, 0.02, 1000, dtype=torch.float32)
        alphas = 1.0 - betas
        alphas_cumprod = torch.cumprod(alphas, dim=0)
        alphas_cumprod = alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)

        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise

        return noisy_samples

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]],
        image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]],
        image_embeds: torch.FloatTensor,
        negative_image_embeds: torch.FloatTensor,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        height: int = 512,
        width: int = 512,
        num_inference_steps: int = 100,
        strength: float = 0.3,
        guidance_scale: float = 7.0,
        num_images_per_prompt: int = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        output_type: Optional[str] = "pil",
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        return_dict: bool = True,
    ):
        """
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            image (`torch.FloatTensor`, `PIL.Image.Image`):
                `Image`, or tensor representing an image batch, that will be used as the starting point for the
                process.
            image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
                The clip image embeddings for text prompt, that will be used to condition the image generation.
            negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
                The clip image embeddings for negative text prompt, will be used to condition the image generation.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            height (`int`, *optional*, defaults to 512):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to 512):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 100):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            strength (`float`, *optional*, defaults to 0.3):
                Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
                will be used as a starting point, adding more noise to it the larger the `strength`. The number of
                denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
                be maximum and the denoising process will run for the full number of iterations specified in
                `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
            guidance_scale (`float`, *optional*, defaults to 4.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
                (`np.array`) or `"pt"` (`torch.Tensor`).
            callback (`Callable`, *optional*):
                A function that calls every `callback_steps` steps during inference. The function is called with the
                following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.

        Examples:

        Returns:
            [`~pipelines.ImagePipelineOutput`] or `tuple`
        """
        # 1. Define call parameters
        if isinstance(prompt, str):
            batch_size = 1
        elif isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        device = self._execution_device

        batch_size = batch_size * num_images_per_prompt

        do_classifier_free_guidance = guidance_scale > 1.0

        # 2. get text and image embeddings
        prompt_embeds, text_encoder_hidden_states, _ = self._encode_prompt(
            prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
        )

        if isinstance(image_embeds, list):
            image_embeds = torch.cat(image_embeds, dim=0)
        if isinstance(negative_image_embeds, list):
            negative_image_embeds = torch.cat(negative_image_embeds, dim=0)

        if do_classifier_free_guidance:
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0)

            image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to(
                dtype=prompt_embeds.dtype, device=device
            )

        # 3. pre-processing initial image
        if not isinstance(image, list):
            image = [image]
        if not all(isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image):
            raise ValueError(
                f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support  PIL image and pytorch tensor"
            )

        image = torch.cat([prepare_image(i, width, height) for i in image], dim=0)
        image = image.to(dtype=prompt_embeds.dtype, device=device)

        latents = self.movq.encode(image)["latents"]
        latents = latents.repeat_interleave(num_images_per_prompt, dim=0)

        # 4. set timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)

        timesteps_tensor, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)

        # the formular to calculate timestep for add_noise is taken from the original kandinsky repo
        latent_timestep = int(self.scheduler.config.num_train_timesteps * strength) - 2

        latent_timestep = torch.tensor([latent_timestep] * batch_size, dtype=timesteps_tensor.dtype, device=device)

        num_channels_latents = self.unet.config.in_channels

        height, width = get_new_h_w(height, width, self.movq_scale_factor)

        # 5. Create initial latent
        latents = self.prepare_latents(
            latents,
            latent_timestep,
            (batch_size, num_channels_latents, height, width),
            text_encoder_hidden_states.dtype,
            device,
            generator,
            self.scheduler,
        )

        # 6. Denoising loop
        for i, t in enumerate(self.progress_bar(timesteps_tensor)):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents

            added_cond_kwargs = {"text_embeds": prompt_embeds, "image_embeds": image_embeds}
            noise_pred = self.unet(
                sample=latent_model_input,
                timestep=t,
                encoder_hidden_states=text_encoder_hidden_states,
                added_cond_kwargs=added_cond_kwargs,
                return_dict=False,
            )[0]

            if do_classifier_free_guidance:
                noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1)
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                _, variance_pred_text = variance_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
                noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1)

            if not (
                hasattr(self.scheduler.config, "variance_type")
                and self.scheduler.config.variance_type in ["learned", "learned_range"]
            ):
                noise_pred, _ = noise_pred.split(latents.shape[1], dim=1)

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(
                noise_pred,
                t,
                latents,
                generator=generator,
            ).prev_sample

            if callback is not None and i % callback_steps == 0:
                step_idx = i // getattr(self.scheduler, "order", 1)
                callback(step_idx, t, latents)

        # 7. post-processing
        image = self.movq.decode(latents, force_not_quantize=True)["sample"]

        self.maybe_free_model_hooks()

        if output_type not in ["pt", "np", "pil"]:
            raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}")

        if output_type in ["np", "pil"]:
            image = image * 0.5 + 0.5
            image = image.clamp(0, 1)
            image = image.cpu().permute(0, 2, 3, 1).float().numpy()

        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)