File size: 22,475 Bytes
135b069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
import random

import cv2
import gradio as gr
import numpy as np
import torch
from controlnet_aux import HEDdetector, OpenposeDetector
from PIL import Image, ImageFilter
from transformers import DPTFeatureExtractor, DPTForDepthEstimation

from diffusers.pipelines.controlnet.pipeline_controlnet import ControlNetModel
from pipeline.pipeline_PowerPaint import StableDiffusionInpaintPipeline as Pipeline
from pipeline.pipeline_PowerPaint_ControlNet import StableDiffusionControlNetInpaintPipeline as controlnetPipeline
from utils.utils import TokenizerWrapper, add_tokens


torch.set_grad_enabled(False)

weight_dtype = torch.float16
global pipe
pipe = Pipeline.from_pretrained("runwayml/stable-diffusion-inpainting", torch_dtype=weight_dtype)
pipe.tokenizer = TokenizerWrapper(
    from_pretrained="runwayml/stable-diffusion-v1-5", subfolder="tokenizer", revision=None
)

add_tokens(
    tokenizer=pipe.tokenizer,
    text_encoder=pipe.text_encoder,
    placeholder_tokens=["P_ctxt", "P_shape", "P_obj"],
    initialize_tokens=["a", "a", "a"],
    num_vectors_per_token=10,
)

from safetensors.torch import load_model


load_model(pipe.unet, "./models/unet/unet.safetensors")
load_model(pipe.text_encoder, "./models/unet/text_encoder.safetensors")
pipe = pipe.to("cuda")


depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
hed = HEDdetector.from_pretrained("lllyasviel/ControlNet")

global current_control
current_control = "canny"
# controlnet_conditioning_scale = 0.8


def set_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)


def get_depth_map(image):
    image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
    with torch.no_grad(), torch.autocast("cuda"):
        depth_map = depth_estimator(image).predicted_depth

    depth_map = torch.nn.functional.interpolate(
        depth_map.unsqueeze(1),
        size=(1024, 1024),
        mode="bicubic",
        align_corners=False,
    )
    depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
    depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
    depth_map = (depth_map - depth_min) / (depth_max - depth_min)
    image = torch.cat([depth_map] * 3, dim=1)

    image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
    image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
    return image


def add_task(prompt, negative_prompt, control_type):
    # print(control_type)
    if control_type == "object-removal":
        promptA = "empty scene blur " + prompt + " P_ctxt"
        promptB = "empty scene blur " + prompt + " P_ctxt"
        negative_promptA = negative_prompt + " P_obj"
        negative_promptB = negative_prompt + " P_obj"
    elif control_type == "shape-guided":
        promptA = prompt + " P_shape"
        promptB = prompt + " P_ctxt"
        negative_promptA = (
            negative_prompt + ", worst quality, low quality, normal quality, bad quality, blurry P_shape"
        )
        negative_promptB = negative_prompt + ", worst quality, low quality, normal quality, bad quality, blurry P_ctxt"
    elif control_type == "image-outpainting":
        promptA = "empty scene " + prompt + " P_ctxt"
        promptB = "empty scene " + prompt + " P_ctxt"
        negative_promptA = negative_prompt + " P_obj"
        negative_promptB = negative_prompt + " P_obj"
    else:
        promptA = prompt + " P_obj"
        promptB = prompt + " P_obj"
        negative_promptA = negative_prompt + ", worst quality, low quality, normal quality, bad quality, blurry, P_obj"
        negative_promptB = negative_prompt + ", worst quality, low quality, normal quality, bad quality, blurry, P_obj"

    return promptA, promptB, negative_promptA, negative_promptB


def predict(
    input_image,
    prompt,
    fitting_degree,
    ddim_steps,
    scale,
    seed,
    negative_prompt,
    task,
    vertical_expansion_ratio,
    horizontal_expansion_ratio,
):
    size1, size2 = input_image["image"].convert("RGB").size

    if task != "image-outpainting":
        if size1 < size2:
            input_image["image"] = input_image["image"].convert("RGB").resize((640, int(size2 / size1 * 640)))
        else:
            input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 640), 640))
    else:
        if size1 < size2:
            input_image["image"] = input_image["image"].convert("RGB").resize((512, int(size2 / size1 * 512)))
        else:
            input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 512), 512))

    if vertical_expansion_ratio != None and horizontal_expansion_ratio != None:
        o_W, o_H = input_image["image"].convert("RGB").size
        c_W = int(horizontal_expansion_ratio * o_W)
        c_H = int(vertical_expansion_ratio * o_H)

        expand_img = np.ones((c_H, c_W, 3), dtype=np.uint8) * 127
        original_img = np.array(input_image["image"])
        expand_img[
            int((c_H - o_H) / 2.0) : int((c_H - o_H) / 2.0) + o_H,
            int((c_W - o_W) / 2.0) : int((c_W - o_W) / 2.0) + o_W,
            :,
        ] = original_img

        blurry_gap = 10

        expand_mask = np.ones((c_H, c_W, 3), dtype=np.uint8) * 255
        if vertical_expansion_ratio == 1 and horizontal_expansion_ratio != 1:
            expand_mask[
                int((c_H - o_H) / 2.0) : int((c_H - o_H) / 2.0) + o_H,
                int((c_W - o_W) / 2.0) + blurry_gap : int((c_W - o_W) / 2.0) + o_W - blurry_gap,
                :,
            ] = 0
        elif vertical_expansion_ratio != 1 and horizontal_expansion_ratio != 1:
            expand_mask[
                int((c_H - o_H) / 2.0) + blurry_gap : int((c_H - o_H) / 2.0) + o_H - blurry_gap,
                int((c_W - o_W) / 2.0) + blurry_gap : int((c_W - o_W) / 2.0) + o_W - blurry_gap,
                :,
            ] = 0
        elif vertical_expansion_ratio != 1 and horizontal_expansion_ratio == 1:
            expand_mask[
                int((c_H - o_H) / 2.0) + blurry_gap : int((c_H - o_H) / 2.0) + o_H - blurry_gap,
                int((c_W - o_W) / 2.0) : int((c_W - o_W) / 2.0) + o_W,
                :,
            ] = 0

        input_image["image"] = Image.fromarray(expand_img)
        input_image["mask"] = Image.fromarray(expand_mask)

    promptA, promptB, negative_promptA, negative_promptB = add_task(prompt, negative_prompt, task)
    print(promptA, promptB, negative_promptA, negative_promptB)
    img = np.array(input_image["image"].convert("RGB"))

    W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
    H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
    input_image["image"] = input_image["image"].resize((H, W))
    input_image["mask"] = input_image["mask"].resize((H, W))
    set_seed(seed)
    global pipe
    result = pipe(
        promptA=promptA,
        promptB=promptB,
        tradoff=fitting_degree,
        tradoff_nag=fitting_degree,
        negative_promptA=negative_promptA,
        negative_promptB=negative_promptB,
        image=input_image["image"].convert("RGB"),
        mask_image=input_image["mask"].convert("RGB"),
        width=H,
        height=W,
        guidance_scale=scale,
        num_inference_steps=ddim_steps,
    ).images[0]
    mask_np = np.array(input_image["mask"].convert("RGB"))
    red = np.array(result).astype("float") * 1
    red[:, :, 0] = 180.0
    red[:, :, 2] = 0
    red[:, :, 1] = 0
    result_m = np.array(result)
    result_m = Image.fromarray(
        (
            result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red
        ).astype("uint8")
    )
    m_img = input_image["mask"].convert("RGB").filter(ImageFilter.GaussianBlur(radius=3))
    m_img = np.asarray(m_img) / 255.0
    img_np = np.asarray(input_image["image"].convert("RGB")) / 255.0
    ours_np = np.asarray(result) / 255.0
    ours_np = ours_np * m_img + (1 - m_img) * img_np
    result_paste = Image.fromarray(np.uint8(ours_np * 255))

    dict_res = [input_image["mask"].convert("RGB"), result_m]

    dict_out = [input_image["image"].convert("RGB"), result_paste]

    return dict_out, dict_res


def predict_controlnet(
    input_image,
    input_control_image,
    control_type,
    prompt,
    ddim_steps,
    scale,
    seed,
    negative_prompt,
    controlnet_conditioning_scale,
):
    promptA = prompt + " P_obj"
    promptB = prompt + " P_obj"
    negative_promptA = negative_prompt
    negative_promptB = negative_prompt
    size1, size2 = input_image["image"].convert("RGB").size

    if size1 < size2:
        input_image["image"] = input_image["image"].convert("RGB").resize((640, int(size2 / size1 * 640)))
    else:
        input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 640), 640))
    img = np.array(input_image["image"].convert("RGB"))
    W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
    H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
    input_image["image"] = input_image["image"].resize((H, W))
    input_image["mask"] = input_image["mask"].resize((H, W))

    global current_control
    global pipe

    base_control = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=weight_dtype)
    control_pipe = controlnetPipeline(
        pipe.vae, pipe.text_encoder, pipe.tokenizer, pipe.unet, base_control, pipe.scheduler, None, None, False
    )
    control_pipe = control_pipe.to("cuda")
    current_control = "canny"
    if current_control != control_type:
        if control_type == "canny" or control_type is None:
            control_pipe.controlnet = ControlNetModel.from_pretrained(
                "lllyasviel/sd-controlnet-canny", torch_dtype=weight_dtype
            )
        elif control_type == "pose":
            control_pipe.controlnet = ControlNetModel.from_pretrained(
                "lllyasviel/sd-controlnet-openpose", torch_dtype=weight_dtype
            )
        elif control_type == "depth":
            control_pipe.controlnet = ControlNetModel.from_pretrained(
                "lllyasviel/sd-controlnet-depth", torch_dtype=weight_dtype
            )
        else:
            control_pipe.controlnet = ControlNetModel.from_pretrained(
                "lllyasviel/sd-controlnet-hed", torch_dtype=weight_dtype
            )
        control_pipe = control_pipe.to("cuda")
        current_control = control_type

    controlnet_image = input_control_image
    if current_control == "canny":
        controlnet_image = controlnet_image.resize((H, W))
        controlnet_image = np.array(controlnet_image)
        controlnet_image = cv2.Canny(controlnet_image, 100, 200)
        controlnet_image = controlnet_image[:, :, None]
        controlnet_image = np.concatenate([controlnet_image, controlnet_image, controlnet_image], axis=2)
        controlnet_image = Image.fromarray(controlnet_image)
    elif current_control == "pose":
        controlnet_image = openpose(controlnet_image)
    elif current_control == "depth":
        controlnet_image = controlnet_image.resize((H, W))
        controlnet_image = get_depth_map(controlnet_image)
    else:
        controlnet_image = hed(controlnet_image)

    mask_np = np.array(input_image["mask"].convert("RGB"))
    controlnet_image = controlnet_image.resize((H, W))
    set_seed(seed)
    result = control_pipe(
        promptA=promptB,
        promptB=promptA,
        tradoff=1.0,
        tradoff_nag=1.0,
        negative_promptA=negative_promptA,
        negative_promptB=negative_promptB,
        image=input_image["image"].convert("RGB"),
        mask_image=input_image["mask"].convert("RGB"),
        control_image=controlnet_image,
        width=H,
        height=W,
        guidance_scale=scale,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        num_inference_steps=ddim_steps,
    ).images[0]
    red = np.array(result).astype("float") * 1
    red[:, :, 0] = 180.0
    red[:, :, 2] = 0
    red[:, :, 1] = 0
    result_m = np.array(result)
    result_m = Image.fromarray(
        (
            result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red
        ).astype("uint8")
    )

    mask_np = np.array(input_image["mask"].convert("RGB"))
    m_img = input_image["mask"].convert("RGB").filter(ImageFilter.GaussianBlur(radius=4))
    m_img = np.asarray(m_img) / 255.0
    img_np = np.asarray(input_image["image"].convert("RGB")) / 255.0
    ours_np = np.asarray(result) / 255.0
    ours_np = ours_np * m_img + (1 - m_img) * img_np
    result_paste = Image.fromarray(np.uint8(ours_np * 255))
    return [input_image["image"].convert("RGB"), result_paste], [controlnet_image, result_m]


def infer(
    input_image,
    text_guided_prompt,
    text_guided_negative_prompt,
    shape_guided_prompt,
    shape_guided_negative_prompt,
    fitting_degree,
    ddim_steps,
    scale,
    seed,
    task,
    enable_control,
    input_control_image,
    control_type,
    vertical_expansion_ratio,
    horizontal_expansion_ratio,
    outpaint_prompt,
    outpaint_negative_prompt,
    controlnet_conditioning_scale,
    removal_prompt,
    removal_negative_prompt,
):
    if task == "text-guided":
        prompt = text_guided_prompt
        negative_prompt = text_guided_negative_prompt
    elif task == "shape-guided":
        prompt = shape_guided_prompt
        negative_prompt = shape_guided_negative_prompt
    elif task == "object-removal":
        prompt = removal_prompt
        negative_prompt = removal_negative_prompt
    elif task == "image-outpainting":
        prompt = outpaint_prompt
        negative_prompt = outpaint_negative_prompt
        return predict(
            input_image,
            prompt,
            fitting_degree,
            ddim_steps,
            scale,
            seed,
            negative_prompt,
            task,
            vertical_expansion_ratio,
            horizontal_expansion_ratio,
        )
    else:
        task = "text-guided"
        prompt = text_guided_prompt
        negative_prompt = text_guided_negative_prompt

    if enable_control and task == "text-guided":
        return predict_controlnet(
            input_image,
            input_control_image,
            control_type,
            prompt,
            ddim_steps,
            scale,
            seed,
            negative_prompt,
            controlnet_conditioning_scale,
        )
    else:
        return predict(input_image, prompt, fitting_degree, ddim_steps, scale, seed, negative_prompt, task, None, None)


def select_tab_text_guided():
    return "text-guided"


def select_tab_object_removal():
    return "object-removal"


def select_tab_image_outpainting():
    return "image-outpainting"


def select_tab_shape_guided():
    return "shape-guided"


with gr.Blocks(css="style.css") as demo:
    with gr.Row():
        gr.Markdown(
            "<div align='center'><font size='18'>PowerPaint: High-Quality Versatile Image Inpainting</font></div>"  # noqa
        )
    with gr.Row():
        gr.Markdown(
            "<div align='center'><font size='5'><a href='https://powerpaint.github.io/'>Project Page</a> &ensp;"  # noqa
            "<a href='https://arxiv.org/abs/2312.03594/'>Paper</a> &ensp;"
            "<a href='https://github.com/open-mmlab/mmagic/tree/main/projects/powerpaint'>Code</a> </font></div>"  # noqa
        )
    with gr.Row():
        gr.Markdown(
            "**Note:** Due to network-related factors, the page may experience occasional bugs! If the inpainting results deviate significantly from expectations, consider toggling between task options to refresh the content."  # noqa
        )
    # Attention: Due to network-related factors, the page may experience occasional bugs. If the inpainting results deviate significantly from expectations, consider toggling between task options to refresh the content.
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Input image and draw mask")
            input_image = gr.Image(source="upload", tool="sketch", type="pil")

            task = gr.Radio(
                ["text-guided", "object-removal", "shape-guided", "image-outpainting"], show_label=False, visible=False
            )

            # Text-guided object inpainting
            with gr.Tab("Text-guided object inpainting") as tab_text_guided:
                enable_text_guided = gr.Checkbox(
                    label="Enable text-guided object inpainting", value=True, interactive=False
                )
                text_guided_prompt = gr.Textbox(label="Prompt")
                text_guided_negative_prompt = gr.Textbox(label="negative_prompt")
                gr.Markdown("### Controlnet setting")
                enable_control = gr.Checkbox(
                    label="Enable controlnet", info="Enable this if you want to use controlnet"
                )
                controlnet_conditioning_scale = gr.Slider(
                    label="controlnet conditioning scale",
                    minimum=0,
                    maximum=1,
                    step=0.05,
                    value=0.5,
                )
                control_type = gr.Radio(["canny", "pose", "depth", "hed"], label="Control type")
                input_control_image = gr.Image(source="upload", type="pil")
            tab_text_guided.select(fn=select_tab_text_guided, inputs=None, outputs=task)

            # Object removal inpainting
            with gr.Tab("Object removal inpainting") as tab_object_removal:
                enable_object_removal = gr.Checkbox(
                    label="Enable object removal inpainting",
                    value=True,
                    info="The recommended configuration for the Guidance Scale is 10 or higher. \
                    If undesired objects appear in the masked area, \
                    you can address this by specifically increasing the Guidance Scale.",
                    interactive=False,
                )
                removal_prompt = gr.Textbox(label="Prompt")
                removal_negative_prompt = gr.Textbox(label="negative_prompt")
            tab_object_removal.select(fn=select_tab_object_removal, inputs=None, outputs=task)

            # Object image outpainting
            with gr.Tab("Image outpainting") as tab_image_outpainting:
                enable_object_removal = gr.Checkbox(
                    label="Enable image outpainting",
                    value=True,
                    info="The recommended configuration for the Guidance Scale is 10 or higher. \
                    If unwanted random objects appear in the extended image region, \
                        you can enhance the cleanliness of the extension area by increasing the Guidance Scale.",
                    interactive=False,
                )
                outpaint_prompt = gr.Textbox(label="Outpainting_prompt")
                outpaint_negative_prompt = gr.Textbox(label="Outpainting_negative_prompt")
                horizontal_expansion_ratio = gr.Slider(
                    label="horizontal expansion ratio",
                    minimum=1,
                    maximum=4,
                    step=0.05,
                    value=1,
                )
                vertical_expansion_ratio = gr.Slider(
                    label="vertical expansion ratio",
                    minimum=1,
                    maximum=4,
                    step=0.05,
                    value=1,
                )
            tab_image_outpainting.select(fn=select_tab_image_outpainting, inputs=None, outputs=task)

            # Shape-guided object inpainting
            with gr.Tab("Shape-guided object inpainting") as tab_shape_guided:
                enable_shape_guided = gr.Checkbox(
                    label="Enable shape-guided object inpainting", value=True, interactive=False
                )
                shape_guided_prompt = gr.Textbox(label="shape_guided_prompt")
                shape_guided_negative_prompt = gr.Textbox(label="shape_guided_negative_prompt")
                fitting_degree = gr.Slider(
                    label="fitting degree",
                    minimum=0,
                    maximum=1,
                    step=0.05,
                    value=1,
                )
            tab_shape_guided.select(fn=select_tab_shape_guided, inputs=None, outputs=task)

            run_button = gr.Button(label="Run")
            with gr.Accordion("Advanced options", open=False):
                ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=45, step=1)
                scale = gr.Slider(
                    label="Guidance Scale",
                    info="For object removal and image outpainting, it is recommended to set the value at 10 or above.",
                    minimum=0.1,
                    maximum=30.0,
                    value=7.5,
                    step=0.1,
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=2147483647,
                    step=1,
                    randomize=True,
                )
        with gr.Column():
            gr.Markdown("### Inpainting result")
            inpaint_result = gr.Gallery(label="Generated images", show_label=False, columns=2)
            gr.Markdown("### Mask")
            gallery = gr.Gallery(label="Generated masks", show_label=False, columns=2)

    run_button.click(
        fn=infer,
        inputs=[
            input_image,
            text_guided_prompt,
            text_guided_negative_prompt,
            shape_guided_prompt,
            shape_guided_negative_prompt,
            fitting_degree,
            ddim_steps,
            scale,
            seed,
            task,
            enable_control,
            input_control_image,
            control_type,
            vertical_expansion_ratio,
            horizontal_expansion_ratio,
            outpaint_prompt,
            outpaint_negative_prompt,
            controlnet_conditioning_scale,
            removal_prompt,
            removal_negative_prompt,
        ],
        outputs=[inpaint_result, gallery],
    )

demo.queue()
demo.launch(share=False, server_name="0.0.0.0", server_port=7860)