File size: 27,353 Bytes
135b069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from pickle import UnpicklingError
from typing import Any, Dict, Union

import jax
import jax.numpy as jnp
import msgpack.exceptions
from flax.core.frozen_dict import FrozenDict, unfreeze
from flax.serialization import from_bytes, to_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
from huggingface_hub import create_repo, hf_hub_download
from huggingface_hub.utils import (
    EntryNotFoundError,
    RepositoryNotFoundError,
    RevisionNotFoundError,
    validate_hf_hub_args,
)
from requests import HTTPError

from .. import __version__, is_torch_available
from ..utils import (
    CONFIG_NAME,
    FLAX_WEIGHTS_NAME,
    HUGGINGFACE_CO_RESOLVE_ENDPOINT,
    WEIGHTS_NAME,
    PushToHubMixin,
    logging,
)
from .modeling_flax_pytorch_utils import convert_pytorch_state_dict_to_flax


logger = logging.get_logger(__name__)


class FlaxModelMixin(PushToHubMixin):
    r"""
    Base class for all Flax models.

    [`FlaxModelMixin`] takes care of storing the model configuration and provides methods for loading, downloading and
    saving models.

        - **config_name** ([`str`]) -- Filename to save a model to when calling [`~FlaxModelMixin.save_pretrained`].
    """

    config_name = CONFIG_NAME
    _automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
    _flax_internal_args = ["name", "parent", "dtype"]

    @classmethod
    def _from_config(cls, config, **kwargs):
        """
        All context managers that the model should be initialized under go here.
        """
        return cls(config, **kwargs)

    def _cast_floating_to(self, params: Union[Dict, FrozenDict], dtype: jnp.dtype, mask: Any = None) -> Any:
        """
        Helper method to cast floating-point values of given parameter `PyTree` to given `dtype`.
        """

        # taken from https://github.com/deepmind/jmp/blob/3a8318abc3292be38582794dbf7b094e6583b192/jmp/_src/policy.py#L27
        def conditional_cast(param):
            if isinstance(param, jnp.ndarray) and jnp.issubdtype(param.dtype, jnp.floating):
                param = param.astype(dtype)
            return param

        if mask is None:
            return jax.tree_map(conditional_cast, params)

        flat_params = flatten_dict(params)
        flat_mask, _ = jax.tree_flatten(mask)

        for masked, key in zip(flat_mask, flat_params.keys()):
            if masked:
                param = flat_params[key]
                flat_params[key] = conditional_cast(param)

        return unflatten_dict(flat_params)

    def to_bf16(self, params: Union[Dict, FrozenDict], mask: Any = None):
        r"""
        Cast the floating-point `params` to `jax.numpy.bfloat16`. This returns a new `params` tree and does not cast
        the `params` in place.

        This method can be used on a TPU to explicitly convert the model parameters to bfloat16 precision to do full
        half-precision training or to save weights in bfloat16 for inference in order to save memory and improve speed.

        Arguments:
            params (`Union[Dict, FrozenDict]`):
                A `PyTree` of model parameters.
            mask (`Union[Dict, FrozenDict]`):
                A `PyTree` with same structure as the `params` tree. The leaves should be booleans. It should be `True`
                for params you want to cast, and `False` for those you want to skip.

        Examples:

        ```python
        >>> from diffusers import FlaxUNet2DConditionModel

        >>> # load model
        >>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> # By default, the model parameters will be in fp32 precision, to cast these to bfloat16 precision
        >>> params = model.to_bf16(params)
        >>> # If you don't want to cast certain parameters (for example layer norm bias and scale)
        >>> # then pass the mask as follows
        >>> from flax import traverse_util

        >>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> flat_params = traverse_util.flatten_dict(params)
        >>> mask = {
        ...     path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale"))
        ...     for path in flat_params
        ... }
        >>> mask = traverse_util.unflatten_dict(mask)
        >>> params = model.to_bf16(params, mask)
        ```"""
        return self._cast_floating_to(params, jnp.bfloat16, mask)

    def to_fp32(self, params: Union[Dict, FrozenDict], mask: Any = None):
        r"""
        Cast the floating-point `params` to `jax.numpy.float32`. This method can be used to explicitly convert the
        model parameters to fp32 precision. This returns a new `params` tree and does not cast the `params` in place.

        Arguments:
            params (`Union[Dict, FrozenDict]`):
                A `PyTree` of model parameters.
            mask (`Union[Dict, FrozenDict]`):
                A `PyTree` with same structure as the `params` tree. The leaves should be booleans. It should be `True`
                for params you want to cast, and `False` for those you want to skip.

        Examples:

        ```python
        >>> from diffusers import FlaxUNet2DConditionModel

        >>> # Download model and configuration from huggingface.co
        >>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> # By default, the model params will be in fp32, to illustrate the use of this method,
        >>> # we'll first cast to fp16 and back to fp32
        >>> params = model.to_f16(params)
        >>> # now cast back to fp32
        >>> params = model.to_fp32(params)
        ```"""
        return self._cast_floating_to(params, jnp.float32, mask)

    def to_fp16(self, params: Union[Dict, FrozenDict], mask: Any = None):
        r"""
        Cast the floating-point `params` to `jax.numpy.float16`. This returns a new `params` tree and does not cast the
        `params` in place.

        This method can be used on a GPU to explicitly convert the model parameters to float16 precision to do full
        half-precision training or to save weights in float16 for inference in order to save memory and improve speed.

        Arguments:
            params (`Union[Dict, FrozenDict]`):
                A `PyTree` of model parameters.
            mask (`Union[Dict, FrozenDict]`):
                A `PyTree` with same structure as the `params` tree. The leaves should be booleans. It should be `True`
                for params you want to cast, and `False` for those you want to skip.

        Examples:

        ```python
        >>> from diffusers import FlaxUNet2DConditionModel

        >>> # load model
        >>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> # By default, the model params will be in fp32, to cast these to float16
        >>> params = model.to_fp16(params)
        >>> # If you want don't want to cast certain parameters (for example layer norm bias and scale)
        >>> # then pass the mask as follows
        >>> from flax import traverse_util

        >>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> flat_params = traverse_util.flatten_dict(params)
        >>> mask = {
        ...     path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale"))
        ...     for path in flat_params
        ... }
        >>> mask = traverse_util.unflatten_dict(mask)
        >>> params = model.to_fp16(params, mask)
        ```"""
        return self._cast_floating_to(params, jnp.float16, mask)

    def init_weights(self, rng: jax.Array) -> Dict:
        raise NotImplementedError(f"init_weights method has to be implemented for {self}")

    @classmethod
    @validate_hf_hub_args
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Union[str, os.PathLike],
        dtype: jnp.dtype = jnp.float32,
        *model_args,
        **kwargs,
    ):
        r"""
        Instantiate a pretrained Flax model from a pretrained model configuration.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                Can be either:

                    - A string, the *model id* (for example `runwayml/stable-diffusion-v1-5`) of a pretrained model
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      using [`~FlaxModelMixin.save_pretrained`].
            dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
                The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
                `jax.numpy.bfloat16` (on TPUs).

                This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
                specified, all the computation will be performed with the given `dtype`.

                <Tip>

                This only specifies the dtype of the *computation* and does not influence the dtype of model
                parameters.

                If you wish to change the dtype of the model parameters, see [`~FlaxModelMixin.to_fp16`] and
                [`~FlaxModelMixin.to_bf16`].

                </Tip>

            model_args (sequence of positional arguments, *optional*):
                All remaining positional arguments are passed to the underlying model's `__init__` method.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            from_pt (`bool`, *optional*, defaults to `False`):
                Load the model weights from a PyTorch checkpoint save file.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to update the configuration object (after it is loaded) and initiate the model (for
                example, `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
                automatically loaded:

                    - If a configuration is provided with `config`, `kwargs` are directly passed to the underlying
                      model's `__init__` method (we assume all relevant updates to the configuration have already been
                      done).
                    - If a configuration is not provided, `kwargs` are first passed to the configuration class
                      initialization function [`~ConfigMixin.from_config`]. Each key of the `kwargs` that corresponds
                      to a configuration attribute is used to override said attribute with the supplied `kwargs` value.
                      Remaining keys that do not correspond to any configuration attribute are passed to the underlying
                      model's `__init__` function.

        Examples:

        ```python
        >>> from diffusers import FlaxUNet2DConditionModel

        >>> # Download model and configuration from huggingface.co and cache.
        >>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
        >>> model, params = FlaxUNet2DConditionModel.from_pretrained("./test/saved_model/")
        ```

        If you get the error message below, you need to finetune the weights for your downstream task:

        ```bash
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
        """
        config = kwargs.pop("config", None)
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        from_pt = kwargs.pop("from_pt", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)

        user_agent = {
            "diffusers": __version__,
            "file_type": "model",
            "framework": "flax",
        }

        # Load config if we don't provide one
        if config is None:
            config, unused_kwargs = cls.load_config(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
                force_download=force_download,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
                subfolder=subfolder,
                **kwargs,
            )

        model, model_kwargs = cls.from_config(config, dtype=dtype, return_unused_kwargs=True, **unused_kwargs)

        # Load model
        pretrained_path_with_subfolder = (
            pretrained_model_name_or_path
            if subfolder is None
            else os.path.join(pretrained_model_name_or_path, subfolder)
        )
        if os.path.isdir(pretrained_path_with_subfolder):
            if from_pt:
                if not os.path.isfile(os.path.join(pretrained_path_with_subfolder, WEIGHTS_NAME)):
                    raise EnvironmentError(
                        f"Error no file named {WEIGHTS_NAME} found in directory {pretrained_path_with_subfolder} "
                    )
                model_file = os.path.join(pretrained_path_with_subfolder, WEIGHTS_NAME)
            elif os.path.isfile(os.path.join(pretrained_path_with_subfolder, FLAX_WEIGHTS_NAME)):
                # Load from a Flax checkpoint
                model_file = os.path.join(pretrained_path_with_subfolder, FLAX_WEIGHTS_NAME)
            # Check if pytorch weights exist instead
            elif os.path.isfile(os.path.join(pretrained_path_with_subfolder, WEIGHTS_NAME)):
                raise EnvironmentError(
                    f"{WEIGHTS_NAME} file found in directory {pretrained_path_with_subfolder}. Please load the model"
                    " using `from_pt=True`."
                )
            else:
                raise EnvironmentError(
                    f"Error no file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME} found in directory "
                    f"{pretrained_path_with_subfolder}."
                )
        else:
            try:
                model_file = hf_hub_download(
                    pretrained_model_name_or_path,
                    filename=FLAX_WEIGHTS_NAME if not from_pt else WEIGHTS_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
                    local_files_only=local_files_only,
                    token=token,
                    user_agent=user_agent,
                    subfolder=subfolder,
                    revision=revision,
                )

            except RepositoryNotFoundError:
                raise EnvironmentError(
                    f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
                    "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
                    "token having permission to this repo with `token` or log in with `huggingface-cli "
                    "login`."
                )
            except RevisionNotFoundError:
                raise EnvironmentError(
                    f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
                    "this model name. Check the model page at "
                    f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
                )
            except EntryNotFoundError:
                raise EnvironmentError(
                    f"{pretrained_model_name_or_path} does not appear to have a file named {FLAX_WEIGHTS_NAME}."
                )
            except HTTPError as err:
                raise EnvironmentError(
                    f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n"
                    f"{err}"
                )
            except ValueError:
                raise EnvironmentError(
                    f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
                    f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
                    f" directory containing a file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}.\nCheckout your"
                    " internet connection or see how to run the library in offline mode at"
                    " 'https://huggingface.co/docs/transformers/installation#offline-mode'."
                )
            except EnvironmentError:
                raise EnvironmentError(
                    f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                    "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                    f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                    f"containing a file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}."
                )

        if from_pt:
            if is_torch_available():
                from .modeling_utils import load_state_dict
            else:
                raise EnvironmentError(
                    "Can't load the model in PyTorch format because PyTorch is not installed. "
                    "Please, install PyTorch or use native Flax weights."
                )

            # Step 1: Get the pytorch file
            pytorch_model_file = load_state_dict(model_file)

            # Step 2: Convert the weights
            state = convert_pytorch_state_dict_to_flax(pytorch_model_file, model)
        else:
            try:
                with open(model_file, "rb") as state_f:
                    state = from_bytes(cls, state_f.read())
            except (UnpicklingError, msgpack.exceptions.ExtraData) as e:
                try:
                    with open(model_file) as f:
                        if f.read().startswith("version"):
                            raise OSError(
                                "You seem to have cloned a repository without having git-lfs installed. Please"
                                " install git-lfs and run `git lfs install` followed by `git lfs pull` in the"
                                " folder you cloned."
                            )
                        else:
                            raise ValueError from e
                except (UnicodeDecodeError, ValueError):
                    raise EnvironmentError(f"Unable to convert {model_file} to Flax deserializable object. ")
            # make sure all arrays are stored as jnp.ndarray
            # NOTE: This is to prevent a bug this will be fixed in Flax >= v0.3.4:
            # https://github.com/google/flax/issues/1261
        state = jax.tree_util.tree_map(lambda x: jax.device_put(x, jax.local_devices(backend="cpu")[0]), state)

        # flatten dicts
        state = flatten_dict(state)

        params_shape_tree = jax.eval_shape(model.init_weights, rng=jax.random.PRNGKey(0))
        required_params = set(flatten_dict(unfreeze(params_shape_tree)).keys())

        shape_state = flatten_dict(unfreeze(params_shape_tree))

        missing_keys = required_params - set(state.keys())
        unexpected_keys = set(state.keys()) - required_params

        if missing_keys:
            logger.warning(
                f"The checkpoint {pretrained_model_name_or_path} is missing required keys: {missing_keys}. "
                "Make sure to call model.init_weights to initialize the missing weights."
            )
            cls._missing_keys = missing_keys

        for key in state.keys():
            if key in shape_state and state[key].shape != shape_state[key].shape:
                raise ValueError(
                    f"Trying to load the pretrained weight for {key} failed: checkpoint has shape "
                    f"{state[key].shape} which is incompatible with the model shape {shape_state[key].shape}. "
                )

        # remove unexpected keys to not be saved again
        for unexpected_key in unexpected_keys:
            del state[unexpected_key]

        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
                " with another architecture."
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")

        if len(missing_keys) > 0:
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
        else:
            logger.info(
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
                f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
                " training."
            )

        return model, unflatten_dict(state)

    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        params: Union[Dict, FrozenDict],
        is_main_process: bool = True,
        push_to_hub: bool = False,
        **kwargs,
    ):
        """
        Save a model and its configuration file to a directory so that it can be reloaded using the
        [`~FlaxModelMixin.from_pretrained`] class method.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save a model and its configuration file to. Will be created if it doesn't exist.
            params (`Union[Dict, FrozenDict]`):
                A `PyTree` of model parameters.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
        """
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        os.makedirs(save_directory, exist_ok=True)

        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            private = kwargs.pop("private", False)
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

        model_to_save = self

        # Attach architecture to the config
        # Save the config
        if is_main_process:
            model_to_save.save_config(save_directory)

        # save model
        output_model_file = os.path.join(save_directory, FLAX_WEIGHTS_NAME)
        with open(output_model_file, "wb") as f:
            model_bytes = to_bytes(params)
            f.write(model_bytes)

        logger.info(f"Model weights saved in {output_model_file}")

        if push_to_hub:
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )