File size: 18,409 Bytes
135b069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


# IMPORTANT:                                                      #
###################################################################
# ----------------------------------------------------------------#
# This file is deprecated and will be removed soon                #
# (as soon as PEFT will become a required dependency for LoRA)    #
# ----------------------------------------------------------------#
###################################################################

from typing import Optional, Tuple, Union

import torch
import torch.nn.functional as F
from torch import nn

from ..utils import deprecate, logging
from ..utils.import_utils import is_transformers_available


if is_transformers_available():
    from transformers import CLIPTextModel, CLIPTextModelWithProjection


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


def text_encoder_attn_modules(text_encoder):
    attn_modules = []

    if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
        for i, layer in enumerate(text_encoder.text_model.encoder.layers):
            name = f"text_model.encoder.layers.{i}.self_attn"
            mod = layer.self_attn
            attn_modules.append((name, mod))
    else:
        raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")

    return attn_modules


def text_encoder_mlp_modules(text_encoder):
    mlp_modules = []

    if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
        for i, layer in enumerate(text_encoder.text_model.encoder.layers):
            mlp_mod = layer.mlp
            name = f"text_model.encoder.layers.{i}.mlp"
            mlp_modules.append((name, mlp_mod))
    else:
        raise ValueError(f"do not know how to get mlp modules for: {text_encoder.__class__.__name__}")

    return mlp_modules


def adjust_lora_scale_text_encoder(text_encoder, lora_scale: float = 1.0):
    for _, attn_module in text_encoder_attn_modules(text_encoder):
        if isinstance(attn_module.q_proj, PatchedLoraProjection):
            attn_module.q_proj.lora_scale = lora_scale
            attn_module.k_proj.lora_scale = lora_scale
            attn_module.v_proj.lora_scale = lora_scale
            attn_module.out_proj.lora_scale = lora_scale

    for _, mlp_module in text_encoder_mlp_modules(text_encoder):
        if isinstance(mlp_module.fc1, PatchedLoraProjection):
            mlp_module.fc1.lora_scale = lora_scale
            mlp_module.fc2.lora_scale = lora_scale


class PatchedLoraProjection(torch.nn.Module):
    def __init__(self, regular_linear_layer, lora_scale=1, network_alpha=None, rank=4, dtype=None):
        deprecation_message = "Use of `PatchedLoraProjection` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`."
        deprecate("PatchedLoraProjection", "1.0.0", deprecation_message)

        super().__init__()
        from ..models.lora import LoRALinearLayer

        self.regular_linear_layer = regular_linear_layer

        device = self.regular_linear_layer.weight.device

        if dtype is None:
            dtype = self.regular_linear_layer.weight.dtype

        self.lora_linear_layer = LoRALinearLayer(
            self.regular_linear_layer.in_features,
            self.regular_linear_layer.out_features,
            network_alpha=network_alpha,
            device=device,
            dtype=dtype,
            rank=rank,
        )

        self.lora_scale = lora_scale

    # overwrite PyTorch's `state_dict` to be sure that only the 'regular_linear_layer' weights are saved
    # when saving the whole text encoder model and when LoRA is unloaded or fused
    def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
        if self.lora_linear_layer is None:
            return self.regular_linear_layer.state_dict(
                *args, destination=destination, prefix=prefix, keep_vars=keep_vars
            )

        return super().state_dict(*args, destination=destination, prefix=prefix, keep_vars=keep_vars)

    def _fuse_lora(self, lora_scale=1.0, safe_fusing=False):
        if self.lora_linear_layer is None:
            return

        dtype, device = self.regular_linear_layer.weight.data.dtype, self.regular_linear_layer.weight.data.device

        w_orig = self.regular_linear_layer.weight.data.float()
        w_up = self.lora_linear_layer.up.weight.data.float()
        w_down = self.lora_linear_layer.down.weight.data.float()

        if self.lora_linear_layer.network_alpha is not None:
            w_up = w_up * self.lora_linear_layer.network_alpha / self.lora_linear_layer.rank

        fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])

        if safe_fusing and torch.isnan(fused_weight).any().item():
            raise ValueError(
                "This LoRA weight seems to be broken. "
                f"Encountered NaN values when trying to fuse LoRA weights for {self}."
                "LoRA weights will not be fused."
            )

        self.regular_linear_layer.weight.data = fused_weight.to(device=device, dtype=dtype)

        # we can drop the lora layer now
        self.lora_linear_layer = None

        # offload the up and down matrices to CPU to not blow the memory
        self.w_up = w_up.cpu()
        self.w_down = w_down.cpu()
        self.lora_scale = lora_scale

    def _unfuse_lora(self):
        if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None):
            return

        fused_weight = self.regular_linear_layer.weight.data
        dtype, device = fused_weight.dtype, fused_weight.device

        w_up = self.w_up.to(device=device).float()
        w_down = self.w_down.to(device).float()

        unfused_weight = fused_weight.float() - (self.lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
        self.regular_linear_layer.weight.data = unfused_weight.to(device=device, dtype=dtype)

        self.w_up = None
        self.w_down = None

    def forward(self, input):
        if self.lora_scale is None:
            self.lora_scale = 1.0
        if self.lora_linear_layer is None:
            return self.regular_linear_layer(input)
        return self.regular_linear_layer(input) + (self.lora_scale * self.lora_linear_layer(input))


class LoRALinearLayer(nn.Module):
    r"""
    A linear layer that is used with LoRA.

    Parameters:
        in_features (`int`):
            Number of input features.
        out_features (`int`):
            Number of output features.
        rank (`int`, `optional`, defaults to 4):
            The rank of the LoRA layer.
        network_alpha (`float`, `optional`, defaults to `None`):
            The value of the network alpha used for stable learning and preventing underflow. This value has the same
            meaning as the `--network_alpha` option in the kohya-ss trainer script. See
            https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        device (`torch.device`, `optional`, defaults to `None`):
            The device to use for the layer's weights.
        dtype (`torch.dtype`, `optional`, defaults to `None`):
            The dtype to use for the layer's weights.
    """

    def __init__(
        self,
        in_features: int,
        out_features: int,
        rank: int = 4,
        network_alpha: Optional[float] = None,
        device: Optional[Union[torch.device, str]] = None,
        dtype: Optional[torch.dtype] = None,
    ):
        super().__init__()

        self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
        self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        self.network_alpha = network_alpha
        self.rank = rank
        self.out_features = out_features
        self.in_features = in_features

        nn.init.normal_(self.down.weight, std=1 / rank)
        nn.init.zeros_(self.up.weight)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        orig_dtype = hidden_states.dtype
        dtype = self.down.weight.dtype

        down_hidden_states = self.down(hidden_states.to(dtype))
        up_hidden_states = self.up(down_hidden_states)

        if self.network_alpha is not None:
            up_hidden_states *= self.network_alpha / self.rank

        return up_hidden_states.to(orig_dtype)


class LoRAConv2dLayer(nn.Module):
    r"""
    A convolutional layer that is used with LoRA.

    Parameters:
        in_features (`int`):
            Number of input features.
        out_features (`int`):
            Number of output features.
        rank (`int`, `optional`, defaults to 4):
            The rank of the LoRA layer.
        kernel_size (`int` or `tuple` of two `int`, `optional`, defaults to 1):
            The kernel size of the convolution.
        stride (`int` or `tuple` of two `int`, `optional`, defaults to 1):
            The stride of the convolution.
        padding (`int` or `tuple` of two `int` or `str`, `optional`, defaults to 0):
            The padding of the convolution.
        network_alpha (`float`, `optional`, defaults to `None`):
            The value of the network alpha used for stable learning and preventing underflow. This value has the same
            meaning as the `--network_alpha` option in the kohya-ss trainer script. See
            https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
    """

    def __init__(
        self,
        in_features: int,
        out_features: int,
        rank: int = 4,
        kernel_size: Union[int, Tuple[int, int]] = (1, 1),
        stride: Union[int, Tuple[int, int]] = (1, 1),
        padding: Union[int, Tuple[int, int], str] = 0,
        network_alpha: Optional[float] = None,
    ):
        super().__init__()

        self.down = nn.Conv2d(in_features, rank, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)
        # according to the official kohya_ss trainer kernel_size are always fixed for the up layer
        # # see: https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L129
        self.up = nn.Conv2d(rank, out_features, kernel_size=(1, 1), stride=(1, 1), bias=False)

        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        self.network_alpha = network_alpha
        self.rank = rank

        nn.init.normal_(self.down.weight, std=1 / rank)
        nn.init.zeros_(self.up.weight)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        orig_dtype = hidden_states.dtype
        dtype = self.down.weight.dtype

        down_hidden_states = self.down(hidden_states.to(dtype))
        up_hidden_states = self.up(down_hidden_states)

        if self.network_alpha is not None:
            up_hidden_states *= self.network_alpha / self.rank

        return up_hidden_states.to(orig_dtype)


class LoRACompatibleConv(nn.Conv2d):
    """
    A convolutional layer that can be used with LoRA.
    """

    def __init__(self, *args, lora_layer: Optional[LoRAConv2dLayer] = None, **kwargs):
        deprecation_message = "Use of `LoRACompatibleConv` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`."
        deprecate("LoRACompatibleConv", "1.0.0", deprecation_message)

        super().__init__(*args, **kwargs)
        self.lora_layer = lora_layer

    def set_lora_layer(self, lora_layer: Optional[LoRAConv2dLayer]):
        deprecation_message = "Use of `set_lora_layer()` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`."
        deprecate("set_lora_layer", "1.0.0", deprecation_message)

        self.lora_layer = lora_layer

    def _fuse_lora(self, lora_scale: float = 1.0, safe_fusing: bool = False):
        if self.lora_layer is None:
            return

        dtype, device = self.weight.data.dtype, self.weight.data.device

        w_orig = self.weight.data.float()
        w_up = self.lora_layer.up.weight.data.float()
        w_down = self.lora_layer.down.weight.data.float()

        if self.lora_layer.network_alpha is not None:
            w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank

        fusion = torch.mm(w_up.flatten(start_dim=1), w_down.flatten(start_dim=1))
        fusion = fusion.reshape((w_orig.shape))
        fused_weight = w_orig + (lora_scale * fusion)

        if safe_fusing and torch.isnan(fused_weight).any().item():
            raise ValueError(
                "This LoRA weight seems to be broken. "
                f"Encountered NaN values when trying to fuse LoRA weights for {self}."
                "LoRA weights will not be fused."
            )

        self.weight.data = fused_weight.to(device=device, dtype=dtype)

        # we can drop the lora layer now
        self.lora_layer = None

        # offload the up and down matrices to CPU to not blow the memory
        self.w_up = w_up.cpu()
        self.w_down = w_down.cpu()
        self._lora_scale = lora_scale

    def _unfuse_lora(self):
        if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None):
            return

        fused_weight = self.weight.data
        dtype, device = fused_weight.data.dtype, fused_weight.data.device

        self.w_up = self.w_up.to(device=device).float()
        self.w_down = self.w_down.to(device).float()

        fusion = torch.mm(self.w_up.flatten(start_dim=1), self.w_down.flatten(start_dim=1))
        fusion = fusion.reshape((fused_weight.shape))
        unfused_weight = fused_weight.float() - (self._lora_scale * fusion)
        self.weight.data = unfused_weight.to(device=device, dtype=dtype)

        self.w_up = None
        self.w_down = None

    def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
        if self.padding_mode != "zeros":
            hidden_states = F.pad(hidden_states, self._reversed_padding_repeated_twice, mode=self.padding_mode)
            padding = (0, 0)
        else:
            padding = self.padding

        original_outputs = F.conv2d(
            hidden_states, self.weight, self.bias, self.stride, padding, self.dilation, self.groups
        )

        if self.lora_layer is None:
            return original_outputs
        else:
            return original_outputs + (scale * self.lora_layer(hidden_states))


class LoRACompatibleLinear(nn.Linear):
    """
    A Linear layer that can be used with LoRA.
    """

    def __init__(self, *args, lora_layer: Optional[LoRALinearLayer] = None, **kwargs):
        deprecation_message = "Use of `LoRACompatibleLinear` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`."
        deprecate("LoRACompatibleLinear", "1.0.0", deprecation_message)

        super().__init__(*args, **kwargs)
        self.lora_layer = lora_layer

    def set_lora_layer(self, lora_layer: Optional[LoRALinearLayer]):
        deprecation_message = "Use of `set_lora_layer()` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`."
        deprecate("set_lora_layer", "1.0.0", deprecation_message)
        self.lora_layer = lora_layer

    def _fuse_lora(self, lora_scale: float = 1.0, safe_fusing: bool = False):
        if self.lora_layer is None:
            return

        dtype, device = self.weight.data.dtype, self.weight.data.device

        w_orig = self.weight.data.float()
        w_up = self.lora_layer.up.weight.data.float()
        w_down = self.lora_layer.down.weight.data.float()

        if self.lora_layer.network_alpha is not None:
            w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank

        fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])

        if safe_fusing and torch.isnan(fused_weight).any().item():
            raise ValueError(
                "This LoRA weight seems to be broken. "
                f"Encountered NaN values when trying to fuse LoRA weights for {self}."
                "LoRA weights will not be fused."
            )

        self.weight.data = fused_weight.to(device=device, dtype=dtype)

        # we can drop the lora layer now
        self.lora_layer = None

        # offload the up and down matrices to CPU to not blow the memory
        self.w_up = w_up.cpu()
        self.w_down = w_down.cpu()
        self._lora_scale = lora_scale

    def _unfuse_lora(self):
        if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None):
            return

        fused_weight = self.weight.data
        dtype, device = fused_weight.dtype, fused_weight.device

        w_up = self.w_up.to(device=device).float()
        w_down = self.w_down.to(device).float()

        unfused_weight = fused_weight.float() - (self._lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
        self.weight.data = unfused_weight.to(device=device, dtype=dtype)

        self.w_up = None
        self.w_down = None

    def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
        if self.lora_layer is None:
            out = super().forward(hidden_states)
            return out
        else:
            out = super().forward(hidden_states) + (scale * self.lora_layer(hidden_states))
            return out