File size: 62,195 Bytes
135b069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Conversion script for the Stable Diffusion checkpoints."""

import os
import re
from contextlib import nullcontext
from io import BytesIO
from urllib.parse import urlparse

import requests
import yaml

from ..models.modeling_utils import load_state_dict
from ..schedulers import (
    DDIMScheduler,
    DDPMScheduler,
    DPMSolverMultistepScheduler,
    EDMDPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    HeunDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
)
from ..utils import is_accelerate_available, is_transformers_available, logging
from ..utils.hub_utils import _get_model_file


if is_transformers_available():
    from transformers import (
        CLIPTextConfig,
        CLIPTextModel,
        CLIPTextModelWithProjection,
        CLIPTokenizer,
    )

if is_accelerate_available():
    from accelerate import init_empty_weights

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

CONFIG_URLS = {
    "v1": "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml",
    "v2": "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml",
    "xl": "https://raw.githubusercontent.com/Stability-AI/generative-models/main/configs/inference/sd_xl_base.yaml",
    "xl_refiner": "https://raw.githubusercontent.com/Stability-AI/generative-models/main/configs/inference/sd_xl_refiner.yaml",
    "upscale": "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/x4-upscaling.yaml",
    "controlnet": "https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml",
}

CHECKPOINT_KEY_NAMES = {
    "v2": "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight",
    "xl_base": "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.bias",
    "xl_refiner": "conditioner.embedders.0.model.transformer.resblocks.9.mlp.c_proj.bias",
}

SCHEDULER_DEFAULT_CONFIG = {
    "beta_schedule": "scaled_linear",
    "beta_start": 0.00085,
    "beta_end": 0.012,
    "interpolation_type": "linear",
    "num_train_timesteps": 1000,
    "prediction_type": "epsilon",
    "sample_max_value": 1.0,
    "set_alpha_to_one": False,
    "skip_prk_steps": True,
    "steps_offset": 1,
    "timestep_spacing": "leading",
}

DIFFUSERS_TO_LDM_MAPPING = {
    "unet": {
        "layers": {
            "time_embedding.linear_1.weight": "time_embed.0.weight",
            "time_embedding.linear_1.bias": "time_embed.0.bias",
            "time_embedding.linear_2.weight": "time_embed.2.weight",
            "time_embedding.linear_2.bias": "time_embed.2.bias",
            "conv_in.weight": "input_blocks.0.0.weight",
            "conv_in.bias": "input_blocks.0.0.bias",
            "conv_norm_out.weight": "out.0.weight",
            "conv_norm_out.bias": "out.0.bias",
            "conv_out.weight": "out.2.weight",
            "conv_out.bias": "out.2.bias",
        },
        "class_embed_type": {
            "class_embedding.linear_1.weight": "label_emb.0.0.weight",
            "class_embedding.linear_1.bias": "label_emb.0.0.bias",
            "class_embedding.linear_2.weight": "label_emb.0.2.weight",
            "class_embedding.linear_2.bias": "label_emb.0.2.bias",
        },
        "addition_embed_type": {
            "add_embedding.linear_1.weight": "label_emb.0.0.weight",
            "add_embedding.linear_1.bias": "label_emb.0.0.bias",
            "add_embedding.linear_2.weight": "label_emb.0.2.weight",
            "add_embedding.linear_2.bias": "label_emb.0.2.bias",
        },
    },
    "controlnet": {
        "layers": {
            "time_embedding.linear_1.weight": "time_embed.0.weight",
            "time_embedding.linear_1.bias": "time_embed.0.bias",
            "time_embedding.linear_2.weight": "time_embed.2.weight",
            "time_embedding.linear_2.bias": "time_embed.2.bias",
            "conv_in.weight": "input_blocks.0.0.weight",
            "conv_in.bias": "input_blocks.0.0.bias",
            "controlnet_cond_embedding.conv_in.weight": "input_hint_block.0.weight",
            "controlnet_cond_embedding.conv_in.bias": "input_hint_block.0.bias",
            "controlnet_cond_embedding.conv_out.weight": "input_hint_block.14.weight",
            "controlnet_cond_embedding.conv_out.bias": "input_hint_block.14.bias",
        },
        "class_embed_type": {
            "class_embedding.linear_1.weight": "label_emb.0.0.weight",
            "class_embedding.linear_1.bias": "label_emb.0.0.bias",
            "class_embedding.linear_2.weight": "label_emb.0.2.weight",
            "class_embedding.linear_2.bias": "label_emb.0.2.bias",
        },
        "addition_embed_type": {
            "add_embedding.linear_1.weight": "label_emb.0.0.weight",
            "add_embedding.linear_1.bias": "label_emb.0.0.bias",
            "add_embedding.linear_2.weight": "label_emb.0.2.weight",
            "add_embedding.linear_2.bias": "label_emb.0.2.bias",
        },
    },
    "vae": {
        "encoder.conv_in.weight": "encoder.conv_in.weight",
        "encoder.conv_in.bias": "encoder.conv_in.bias",
        "encoder.conv_out.weight": "encoder.conv_out.weight",
        "encoder.conv_out.bias": "encoder.conv_out.bias",
        "encoder.conv_norm_out.weight": "encoder.norm_out.weight",
        "encoder.conv_norm_out.bias": "encoder.norm_out.bias",
        "decoder.conv_in.weight": "decoder.conv_in.weight",
        "decoder.conv_in.bias": "decoder.conv_in.bias",
        "decoder.conv_out.weight": "decoder.conv_out.weight",
        "decoder.conv_out.bias": "decoder.conv_out.bias",
        "decoder.conv_norm_out.weight": "decoder.norm_out.weight",
        "decoder.conv_norm_out.bias": "decoder.norm_out.bias",
        "quant_conv.weight": "quant_conv.weight",
        "quant_conv.bias": "quant_conv.bias",
        "post_quant_conv.weight": "post_quant_conv.weight",
        "post_quant_conv.bias": "post_quant_conv.bias",
    },
    "openclip": {
        "layers": {
            "text_model.embeddings.position_embedding.weight": "positional_embedding",
            "text_model.embeddings.token_embedding.weight": "token_embedding.weight",
            "text_model.final_layer_norm.weight": "ln_final.weight",
            "text_model.final_layer_norm.bias": "ln_final.bias",
            "text_projection.weight": "text_projection",
        },
        "transformer": {
            "text_model.encoder.layers.": "resblocks.",
            "layer_norm1": "ln_1",
            "layer_norm2": "ln_2",
            ".fc1.": ".c_fc.",
            ".fc2.": ".c_proj.",
            ".self_attn": ".attn",
            "transformer.text_model.final_layer_norm.": "ln_final.",
            "transformer.text_model.embeddings.token_embedding.weight": "token_embedding.weight",
            "transformer.text_model.embeddings.position_embedding.weight": "positional_embedding",
        },
    },
}

LDM_VAE_KEY = "first_stage_model."
LDM_VAE_DEFAULT_SCALING_FACTOR = 0.18215
PLAYGROUND_VAE_SCALING_FACTOR = 0.5
LDM_UNET_KEY = "model.diffusion_model."
LDM_CONTROLNET_KEY = "control_model."
LDM_CLIP_PREFIX_TO_REMOVE = ["cond_stage_model.transformer.", "conditioner.embedders.0.transformer."]
LDM_OPEN_CLIP_TEXT_PROJECTION_DIM = 1024

SD_2_TEXT_ENCODER_KEYS_TO_IGNORE = [
    "cond_stage_model.model.transformer.resblocks.23.attn.in_proj_bias",
    "cond_stage_model.model.transformer.resblocks.23.attn.in_proj_weight",
    "cond_stage_model.model.transformer.resblocks.23.attn.out_proj.bias",
    "cond_stage_model.model.transformer.resblocks.23.attn.out_proj.weight",
    "cond_stage_model.model.transformer.resblocks.23.ln_1.bias",
    "cond_stage_model.model.transformer.resblocks.23.ln_1.weight",
    "cond_stage_model.model.transformer.resblocks.23.ln_2.bias",
    "cond_stage_model.model.transformer.resblocks.23.ln_2.weight",
    "cond_stage_model.model.transformer.resblocks.23.mlp.c_fc.bias",
    "cond_stage_model.model.transformer.resblocks.23.mlp.c_fc.weight",
    "cond_stage_model.model.transformer.resblocks.23.mlp.c_proj.bias",
    "cond_stage_model.model.transformer.resblocks.23.mlp.c_proj.weight",
    "cond_stage_model.model.text_projection",
]


VALID_URL_PREFIXES = ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]


def _extract_repo_id_and_weights_name(pretrained_model_name_or_path):
    pattern = r"([^/]+)/([^/]+)/(?:blob/main/)?(.+)"
    weights_name = None
    repo_id = (None,)
    for prefix in VALID_URL_PREFIXES:
        pretrained_model_name_or_path = pretrained_model_name_or_path.replace(prefix, "")
    match = re.match(pattern, pretrained_model_name_or_path)
    if not match:
        return repo_id, weights_name

    repo_id = f"{match.group(1)}/{match.group(2)}"
    weights_name = match.group(3)

    return repo_id, weights_name


def fetch_ldm_config_and_checkpoint(
    pretrained_model_link_or_path,
    class_name,
    original_config_file=None,
    resume_download=False,
    force_download=False,
    proxies=None,
    token=None,
    cache_dir=None,
    local_files_only=None,
    revision=None,
):
    if os.path.isfile(pretrained_model_link_or_path):
        checkpoint = load_state_dict(pretrained_model_link_or_path)

    else:
        repo_id, weights_name = _extract_repo_id_and_weights_name(pretrained_model_link_or_path)
        checkpoint_path = _get_model_file(
            repo_id,
            weights_name=weights_name,
            force_download=force_download,
            cache_dir=cache_dir,
            resume_download=resume_download,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
        )
        checkpoint = load_state_dict(checkpoint_path)

    # some checkpoints contain the model state dict under a "state_dict" key
    while "state_dict" in checkpoint:
        checkpoint = checkpoint["state_dict"]

    original_config = fetch_original_config(class_name, checkpoint, original_config_file)

    return original_config, checkpoint


def infer_original_config_file(class_name, checkpoint):
    if CHECKPOINT_KEY_NAMES["v2"] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES["v2"]].shape[-1] == 1024:
        config_url = CONFIG_URLS["v2"]

    elif CHECKPOINT_KEY_NAMES["xl_base"] in checkpoint:
        config_url = CONFIG_URLS["xl"]

    elif CHECKPOINT_KEY_NAMES["xl_refiner"] in checkpoint:
        config_url = CONFIG_URLS["xl_refiner"]

    elif class_name == "StableDiffusionUpscalePipeline":
        config_url = CONFIG_URLS["upscale"]

    elif class_name == "ControlNetModel":
        config_url = CONFIG_URLS["controlnet"]

    else:
        config_url = CONFIG_URLS["v1"]

    original_config_file = BytesIO(requests.get(config_url).content)

    return original_config_file


def fetch_original_config(pipeline_class_name, checkpoint, original_config_file=None):
    def is_valid_url(url):
        result = urlparse(url)
        if result.scheme and result.netloc:
            return True

        return False

    if original_config_file is None:
        original_config_file = infer_original_config_file(pipeline_class_name, checkpoint)

    elif os.path.isfile(original_config_file):
        with open(original_config_file, "r") as fp:
            original_config_file = fp.read()

    elif is_valid_url(original_config_file):
        original_config_file = BytesIO(requests.get(original_config_file).content)

    else:
        raise ValueError("Invalid `original_config_file` provided. Please set it to a valid file path or URL.")

    original_config = yaml.safe_load(original_config_file)

    return original_config


def infer_model_type(original_config, checkpoint=None, model_type=None):
    if model_type is not None:
        return model_type

    has_cond_stage_config = (
        "cond_stage_config" in original_config["model"]["params"]
        and original_config["model"]["params"]["cond_stage_config"] is not None
    )
    has_network_config = (
        "network_config" in original_config["model"]["params"]
        and original_config["model"]["params"]["network_config"] is not None
    )

    if has_cond_stage_config:
        model_type = original_config["model"]["params"]["cond_stage_config"]["target"].split(".")[-1]

    elif has_network_config:
        context_dim = original_config["model"]["params"]["network_config"]["params"]["context_dim"]
        if "edm_mean" in checkpoint and "edm_std" in checkpoint:
            model_type = "Playground"
        elif context_dim == 2048:
            model_type = "SDXL"
        else:
            model_type = "SDXL-Refiner"
    else:
        raise ValueError("Unable to infer model type from config")

    logger.debug(f"No `model_type` given, `model_type` inferred as: {model_type}")

    return model_type


def get_default_scheduler_config():
    return SCHEDULER_DEFAULT_CONFIG


def set_image_size(pipeline_class_name, original_config, checkpoint, image_size=None, model_type=None):
    if image_size:
        return image_size

    global_step = checkpoint["global_step"] if "global_step" in checkpoint else None
    model_type = infer_model_type(original_config, checkpoint, model_type)

    if pipeline_class_name == "StableDiffusionUpscalePipeline":
        image_size = original_config["model"]["params"]["unet_config"]["params"]["image_size"]
        return image_size

    elif model_type in ["SDXL", "SDXL-Refiner", "Playground"]:
        image_size = 1024
        return image_size

    elif (
        "parameterization" in original_config["model"]["params"]
        and original_config["model"]["params"]["parameterization"] == "v"
    ):
        # NOTE: For stable diffusion 2 base one has to pass `image_size==512`
        # as it relies on a brittle global step parameter here
        image_size = 512 if global_step == 875000 else 768
        return image_size

    else:
        image_size = 512
        return image_size


# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.conv_attn_to_linear
def conv_attn_to_linear(checkpoint):
    keys = list(checkpoint.keys())
    attn_keys = ["query.weight", "key.weight", "value.weight"]
    for key in keys:
        if ".".join(key.split(".")[-2:]) in attn_keys:
            if checkpoint[key].ndim > 2:
                checkpoint[key] = checkpoint[key][:, :, 0, 0]
        elif "proj_attn.weight" in key:
            if checkpoint[key].ndim > 2:
                checkpoint[key] = checkpoint[key][:, :, 0]


def create_unet_diffusers_config(original_config, image_size: int):
    """
    Creates a config for the diffusers based on the config of the LDM model.
    """
    if (
        "unet_config" in original_config["model"]["params"]
        and original_config["model"]["params"]["unet_config"] is not None
    ):
        unet_params = original_config["model"]["params"]["unet_config"]["params"]
    else:
        unet_params = original_config["model"]["params"]["network_config"]["params"]

    vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
    block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]]

    down_block_types = []
    resolution = 1
    for i in range(len(block_out_channels)):
        block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D"
        down_block_types.append(block_type)
        if i != len(block_out_channels) - 1:
            resolution *= 2

    up_block_types = []
    for i in range(len(block_out_channels)):
        block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D"
        up_block_types.append(block_type)
        resolution //= 2

    if unet_params["transformer_depth"] is not None:
        transformer_layers_per_block = (
            unet_params["transformer_depth"]
            if isinstance(unet_params["transformer_depth"], int)
            else list(unet_params["transformer_depth"])
        )
    else:
        transformer_layers_per_block = 1

    vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1)

    head_dim = unet_params["num_heads"] if "num_heads" in unet_params else None
    use_linear_projection = (
        unet_params["use_linear_in_transformer"] if "use_linear_in_transformer" in unet_params else False
    )
    if use_linear_projection:
        # stable diffusion 2-base-512 and 2-768
        if head_dim is None:
            head_dim_mult = unet_params["model_channels"] // unet_params["num_head_channels"]
            head_dim = [head_dim_mult * c for c in list(unet_params["channel_mult"])]

    class_embed_type = None
    addition_embed_type = None
    addition_time_embed_dim = None
    projection_class_embeddings_input_dim = None
    context_dim = None

    if unet_params["context_dim"] is not None:
        context_dim = (
            unet_params["context_dim"]
            if isinstance(unet_params["context_dim"], int)
            else unet_params["context_dim"][0]
        )

    if "num_classes" in unet_params:
        if unet_params["num_classes"] == "sequential":
            if context_dim in [2048, 1280]:
                # SDXL
                addition_embed_type = "text_time"
                addition_time_embed_dim = 256
            else:
                class_embed_type = "projection"
            assert "adm_in_channels" in unet_params
            projection_class_embeddings_input_dim = unet_params["adm_in_channels"]

    config = {
        "sample_size": image_size // vae_scale_factor,
        "in_channels": unet_params["in_channels"],
        "down_block_types": down_block_types,
        "block_out_channels": block_out_channels,
        "layers_per_block": unet_params["num_res_blocks"],
        "cross_attention_dim": context_dim,
        "attention_head_dim": head_dim,
        "use_linear_projection": use_linear_projection,
        "class_embed_type": class_embed_type,
        "addition_embed_type": addition_embed_type,
        "addition_time_embed_dim": addition_time_embed_dim,
        "projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
        "transformer_layers_per_block": transformer_layers_per_block,
    }

    if "disable_self_attentions" in unet_params:
        config["only_cross_attention"] = unet_params["disable_self_attentions"]

    if "num_classes" in unet_params and isinstance(unet_params["num_classes"], int):
        config["num_class_embeds"] = unet_params["num_classes"]

    config["out_channels"] = unet_params["out_channels"]
    config["up_block_types"] = up_block_types

    return config


def create_controlnet_diffusers_config(original_config, image_size: int):
    unet_params = original_config["model"]["params"]["control_stage_config"]["params"]
    diffusers_unet_config = create_unet_diffusers_config(original_config, image_size=image_size)

    controlnet_config = {
        "conditioning_channels": unet_params["hint_channels"],
        "in_channels": diffusers_unet_config["in_channels"],
        "down_block_types": diffusers_unet_config["down_block_types"],
        "block_out_channels": diffusers_unet_config["block_out_channels"],
        "layers_per_block": diffusers_unet_config["layers_per_block"],
        "cross_attention_dim": diffusers_unet_config["cross_attention_dim"],
        "attention_head_dim": diffusers_unet_config["attention_head_dim"],
        "use_linear_projection": diffusers_unet_config["use_linear_projection"],
        "class_embed_type": diffusers_unet_config["class_embed_type"],
        "addition_embed_type": diffusers_unet_config["addition_embed_type"],
        "addition_time_embed_dim": diffusers_unet_config["addition_time_embed_dim"],
        "projection_class_embeddings_input_dim": diffusers_unet_config["projection_class_embeddings_input_dim"],
        "transformer_layers_per_block": diffusers_unet_config["transformer_layers_per_block"],
    }

    return controlnet_config


def create_vae_diffusers_config(original_config, image_size, scaling_factor=None, latents_mean=None, latents_std=None):
    """
    Creates a config for the diffusers based on the config of the LDM model.
    """
    vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
    if (scaling_factor is None) and (latents_mean is not None) and (latents_std is not None):
        scaling_factor = PLAYGROUND_VAE_SCALING_FACTOR
    elif (scaling_factor is None) and ("scale_factor" in original_config["model"]["params"]):
        scaling_factor = original_config["model"]["params"]["scale_factor"]
    elif scaling_factor is None:
        scaling_factor = LDM_VAE_DEFAULT_SCALING_FACTOR

    block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]]
    down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
    up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)

    config = {
        "sample_size": image_size,
        "in_channels": vae_params["in_channels"],
        "out_channels": vae_params["out_ch"],
        "down_block_types": down_block_types,
        "up_block_types": up_block_types,
        "block_out_channels": block_out_channels,
        "latent_channels": vae_params["z_channels"],
        "layers_per_block": vae_params["num_res_blocks"],
        "scaling_factor": scaling_factor,
    }
    if latents_mean is not None and latents_std is not None:
        config.update({"latents_mean": latents_mean, "latents_std": latents_std})

    return config


def update_unet_resnet_ldm_to_diffusers(ldm_keys, new_checkpoint, checkpoint, mapping=None):
    for ldm_key in ldm_keys:
        diffusers_key = (
            ldm_key.replace("in_layers.0", "norm1")
            .replace("in_layers.2", "conv1")
            .replace("out_layers.0", "norm2")
            .replace("out_layers.3", "conv2")
            .replace("emb_layers.1", "time_emb_proj")
            .replace("skip_connection", "conv_shortcut")
        )
        if mapping:
            diffusers_key = diffusers_key.replace(mapping["old"], mapping["new"])
        new_checkpoint[diffusers_key] = checkpoint.pop(ldm_key)


def update_unet_attention_ldm_to_diffusers(ldm_keys, new_checkpoint, checkpoint, mapping):
    for ldm_key in ldm_keys:
        diffusers_key = ldm_key.replace(mapping["old"], mapping["new"])
        new_checkpoint[diffusers_key] = checkpoint.pop(ldm_key)


def convert_ldm_unet_checkpoint(checkpoint, config, extract_ema=False):
    """
    Takes a state dict and a config, and returns a converted checkpoint.
    """
    # extract state_dict for UNet
    unet_state_dict = {}
    keys = list(checkpoint.keys())
    unet_key = LDM_UNET_KEY

    # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
    if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
        logger.warning("Checkpoint has both EMA and non-EMA weights.")
        logger.warning(
            "In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
            " weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
        )
        for key in keys:
            if key.startswith("model.diffusion_model"):
                flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
                unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
    else:
        if sum(k.startswith("model_ema") for k in keys) > 100:
            logger.warning(
                "In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
                " weights (usually better for inference), please make sure to add the `--extract_ema` flag."
            )
        for key in keys:
            if key.startswith(unet_key):
                unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)

    new_checkpoint = {}
    ldm_unet_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["layers"]
    for diffusers_key, ldm_key in ldm_unet_keys.items():
        if ldm_key not in unet_state_dict:
            continue
        new_checkpoint[diffusers_key] = unet_state_dict[ldm_key]

    if ("class_embed_type" in config) and (config["class_embed_type"] in ["timestep", "projection"]):
        class_embed_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["class_embed_type"]
        for diffusers_key, ldm_key in class_embed_keys.items():
            new_checkpoint[diffusers_key] = unet_state_dict[ldm_key]

    if ("addition_embed_type" in config) and (config["addition_embed_type"] == "text_time"):
        addition_embed_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["addition_embed_type"]
        for diffusers_key, ldm_key in addition_embed_keys.items():
            new_checkpoint[diffusers_key] = unet_state_dict[ldm_key]

    # Relevant to StableDiffusionUpscalePipeline
    if "num_class_embeds" in config:
        if (config["num_class_embeds"] is not None) and ("label_emb.weight" in unet_state_dict):
            new_checkpoint["class_embedding.weight"] = unet_state_dict["label_emb.weight"]

    # Retrieves the keys for the input blocks only
    num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
    input_blocks = {
        layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
        for layer_id in range(num_input_blocks)
    }

    # Retrieves the keys for the middle blocks only
    num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
    middle_blocks = {
        layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
        for layer_id in range(num_middle_blocks)
    }

    # Retrieves the keys for the output blocks only
    num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
    output_blocks = {
        layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
        for layer_id in range(num_output_blocks)
    }

    # Down blocks
    for i in range(1, num_input_blocks):
        block_id = (i - 1) // (config["layers_per_block"] + 1)
        layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)

        resnets = [
            key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
        ]
        update_unet_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            unet_state_dict,
            {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"},
        )

        if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
                f"input_blocks.{i}.0.op.weight"
            )
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
                f"input_blocks.{i}.0.op.bias"
            )

        attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
        if attentions:
            update_unet_attention_ldm_to_diffusers(
                attentions,
                new_checkpoint,
                unet_state_dict,
                {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"},
            )

    # Mid blocks
    resnet_0 = middle_blocks[0]
    attentions = middle_blocks[1]
    resnet_1 = middle_blocks[2]

    update_unet_resnet_ldm_to_diffusers(
        resnet_0, new_checkpoint, unet_state_dict, mapping={"old": "middle_block.0", "new": "mid_block.resnets.0"}
    )
    update_unet_resnet_ldm_to_diffusers(
        resnet_1, new_checkpoint, unet_state_dict, mapping={"old": "middle_block.2", "new": "mid_block.resnets.1"}
    )
    update_unet_attention_ldm_to_diffusers(
        attentions, new_checkpoint, unet_state_dict, mapping={"old": "middle_block.1", "new": "mid_block.attentions.0"}
    )

    # Up Blocks
    for i in range(num_output_blocks):
        block_id = i // (config["layers_per_block"] + 1)
        layer_in_block_id = i % (config["layers_per_block"] + 1)

        resnets = [
            key for key in output_blocks[i] if f"output_blocks.{i}.0" in key and f"output_blocks.{i}.0.op" not in key
        ]
        update_unet_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            unet_state_dict,
            {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"},
        )

        attentions = [
            key for key in output_blocks[i] if f"output_blocks.{i}.1" in key and f"output_blocks.{i}.1.conv" not in key
        ]
        if attentions:
            update_unet_attention_ldm_to_diffusers(
                attentions,
                new_checkpoint,
                unet_state_dict,
                {"old": f"output_blocks.{i}.1", "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}"},
            )

        if f"output_blocks.{i}.1.conv.weight" in unet_state_dict:
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
                f"output_blocks.{i}.1.conv.weight"
            ]
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
                f"output_blocks.{i}.1.conv.bias"
            ]
        if f"output_blocks.{i}.2.conv.weight" in unet_state_dict:
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
                f"output_blocks.{i}.2.conv.weight"
            ]
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
                f"output_blocks.{i}.2.conv.bias"
            ]

    return new_checkpoint


def convert_controlnet_checkpoint(
    checkpoint,
    config,
):
    # Some controlnet ckpt files are distributed independently from the rest of the
    # model components i.e. https://huggingface.co/thibaud/controlnet-sd21/
    if "time_embed.0.weight" in checkpoint:
        controlnet_state_dict = checkpoint

    else:
        controlnet_state_dict = {}
        keys = list(checkpoint.keys())
        controlnet_key = LDM_CONTROLNET_KEY
        for key in keys:
            if key.startswith(controlnet_key):
                controlnet_state_dict[key.replace(controlnet_key, "")] = checkpoint.pop(key)

    new_checkpoint = {}
    ldm_controlnet_keys = DIFFUSERS_TO_LDM_MAPPING["controlnet"]["layers"]
    for diffusers_key, ldm_key in ldm_controlnet_keys.items():
        if ldm_key not in controlnet_state_dict:
            continue
        new_checkpoint[diffusers_key] = controlnet_state_dict[ldm_key]

    # Retrieves the keys for the input blocks only
    num_input_blocks = len(
        {".".join(layer.split(".")[:2]) for layer in controlnet_state_dict if "input_blocks" in layer}
    )
    input_blocks = {
        layer_id: [key for key in controlnet_state_dict if f"input_blocks.{layer_id}" in key]
        for layer_id in range(num_input_blocks)
    }

    # Down blocks
    for i in range(1, num_input_blocks):
        block_id = (i - 1) // (config["layers_per_block"] + 1)
        layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)

        resnets = [
            key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
        ]
        update_unet_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            controlnet_state_dict,
            {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"},
        )

        if f"input_blocks.{i}.0.op.weight" in controlnet_state_dict:
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = controlnet_state_dict.pop(
                f"input_blocks.{i}.0.op.weight"
            )
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = controlnet_state_dict.pop(
                f"input_blocks.{i}.0.op.bias"
            )

        attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
        if attentions:
            update_unet_attention_ldm_to_diffusers(
                attentions,
                new_checkpoint,
                controlnet_state_dict,
                {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"},
            )

    # controlnet down blocks
    for i in range(num_input_blocks):
        new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = controlnet_state_dict.pop(f"zero_convs.{i}.0.weight")
        new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = controlnet_state_dict.pop(f"zero_convs.{i}.0.bias")

    # Retrieves the keys for the middle blocks only
    num_middle_blocks = len(
        {".".join(layer.split(".")[:2]) for layer in controlnet_state_dict if "middle_block" in layer}
    )
    middle_blocks = {
        layer_id: [key for key in controlnet_state_dict if f"middle_block.{layer_id}" in key]
        for layer_id in range(num_middle_blocks)
    }
    if middle_blocks:
        resnet_0 = middle_blocks[0]
        attentions = middle_blocks[1]
        resnet_1 = middle_blocks[2]

        update_unet_resnet_ldm_to_diffusers(
            resnet_0,
            new_checkpoint,
            controlnet_state_dict,
            mapping={"old": "middle_block.0", "new": "mid_block.resnets.0"},
        )
        update_unet_resnet_ldm_to_diffusers(
            resnet_1,
            new_checkpoint,
            controlnet_state_dict,
            mapping={"old": "middle_block.2", "new": "mid_block.resnets.1"},
        )
        update_unet_attention_ldm_to_diffusers(
            attentions,
            new_checkpoint,
            controlnet_state_dict,
            mapping={"old": "middle_block.1", "new": "mid_block.attentions.0"},
        )

    # mid block
    new_checkpoint["controlnet_mid_block.weight"] = controlnet_state_dict.pop("middle_block_out.0.weight")
    new_checkpoint["controlnet_mid_block.bias"] = controlnet_state_dict.pop("middle_block_out.0.bias")

    # controlnet cond embedding blocks
    cond_embedding_blocks = {
        ".".join(layer.split(".")[:2])
        for layer in controlnet_state_dict
        if "input_hint_block" in layer and ("input_hint_block.0" not in layer) and ("input_hint_block.14" not in layer)
    }
    num_cond_embedding_blocks = len(cond_embedding_blocks)

    for idx in range(1, num_cond_embedding_blocks + 1):
        diffusers_idx = idx - 1
        cond_block_id = 2 * idx

        new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_idx}.weight"] = controlnet_state_dict.pop(
            f"input_hint_block.{cond_block_id}.weight"
        )
        new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_idx}.bias"] = controlnet_state_dict.pop(
            f"input_hint_block.{cond_block_id}.bias"
        )

    return new_checkpoint


def create_diffusers_controlnet_model_from_ldm(
    pipeline_class_name, original_config, checkpoint, upcast_attention=False, image_size=None, torch_dtype=None
):
    # import here to avoid circular imports
    from ..models import ControlNetModel

    image_size = set_image_size(pipeline_class_name, original_config, checkpoint, image_size=image_size)

    diffusers_config = create_controlnet_diffusers_config(original_config, image_size=image_size)
    diffusers_config["upcast_attention"] = upcast_attention

    diffusers_format_controlnet_checkpoint = convert_controlnet_checkpoint(checkpoint, diffusers_config)

    ctx = init_empty_weights if is_accelerate_available() else nullcontext
    with ctx():
        controlnet = ControlNetModel(**diffusers_config)

    if is_accelerate_available():
        from ..models.modeling_utils import load_model_dict_into_meta

        unexpected_keys = load_model_dict_into_meta(
            controlnet, diffusers_format_controlnet_checkpoint, dtype=torch_dtype
        )
        if controlnet._keys_to_ignore_on_load_unexpected is not None:
            for pat in controlnet._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

        if len(unexpected_keys) > 0:
            logger.warn(
                f"Some weights of the model checkpoint were not used when initializing {controlnet.__name__}: \n {[', '.join(unexpected_keys)]}"
            )
    else:
        controlnet.load_state_dict(diffusers_format_controlnet_checkpoint)

    if torch_dtype is not None:
        controlnet = controlnet.to(torch_dtype)

    return {"controlnet": controlnet}


def update_vae_resnet_ldm_to_diffusers(keys, new_checkpoint, checkpoint, mapping):
    for ldm_key in keys:
        diffusers_key = ldm_key.replace(mapping["old"], mapping["new"]).replace("nin_shortcut", "conv_shortcut")
        new_checkpoint[diffusers_key] = checkpoint.pop(ldm_key)


def update_vae_attentions_ldm_to_diffusers(keys, new_checkpoint, checkpoint, mapping):
    for ldm_key in keys:
        diffusers_key = (
            ldm_key.replace(mapping["old"], mapping["new"])
            .replace("norm.weight", "group_norm.weight")
            .replace("norm.bias", "group_norm.bias")
            .replace("q.weight", "to_q.weight")
            .replace("q.bias", "to_q.bias")
            .replace("k.weight", "to_k.weight")
            .replace("k.bias", "to_k.bias")
            .replace("v.weight", "to_v.weight")
            .replace("v.bias", "to_v.bias")
            .replace("proj_out.weight", "to_out.0.weight")
            .replace("proj_out.bias", "to_out.0.bias")
        )
        new_checkpoint[diffusers_key] = checkpoint.pop(ldm_key)

        # proj_attn.weight has to be converted from conv 1D to linear
        shape = new_checkpoint[diffusers_key].shape

        if len(shape) == 3:
            new_checkpoint[diffusers_key] = new_checkpoint[diffusers_key][:, :, 0]
        elif len(shape) == 4:
            new_checkpoint[diffusers_key] = new_checkpoint[diffusers_key][:, :, 0, 0]


def convert_ldm_vae_checkpoint(checkpoint, config):
    # extract state dict for VAE
    # remove the LDM_VAE_KEY prefix from the ldm checkpoint keys so that it is easier to map them to diffusers keys
    vae_state_dict = {}
    keys = list(checkpoint.keys())
    vae_key = LDM_VAE_KEY if any(k.startswith(LDM_VAE_KEY) for k in keys) else ""
    for key in keys:
        if key.startswith(vae_key):
            vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)

    new_checkpoint = {}
    vae_diffusers_ldm_map = DIFFUSERS_TO_LDM_MAPPING["vae"]
    for diffusers_key, ldm_key in vae_diffusers_ldm_map.items():
        if ldm_key not in vae_state_dict:
            continue
        new_checkpoint[diffusers_key] = vae_state_dict[ldm_key]

    # Retrieves the keys for the encoder down blocks only
    num_down_blocks = len(config["down_block_types"])
    down_blocks = {
        layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
    }

    for i in range(num_down_blocks):
        resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"},
        )
        if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
                f"encoder.down.{i}.downsample.conv.weight"
            )
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
                f"encoder.down.{i}.downsample.conv.bias"
            )

    mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"},
        )

    mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
    update_vae_attentions_ldm_to_diffusers(
        mid_attentions, new_checkpoint, vae_state_dict, mapping={"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    )

    # Retrieves the keys for the decoder up blocks only
    num_up_blocks = len(config["up_block_types"])
    up_blocks = {
        layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
    }

    for i in range(num_up_blocks):
        block_id = num_up_blocks - 1 - i
        resnets = [
            key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
        ]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"},
        )
        if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
                f"decoder.up.{block_id}.upsample.conv.weight"
            ]
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
                f"decoder.up.{block_id}.upsample.conv.bias"
            ]

    mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"},
        )

    mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
    update_vae_attentions_ldm_to_diffusers(
        mid_attentions, new_checkpoint, vae_state_dict, mapping={"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    )
    conv_attn_to_linear(new_checkpoint)

    return new_checkpoint


def create_text_encoder_from_ldm_clip_checkpoint(config_name, checkpoint, local_files_only=False, torch_dtype=None):
    try:
        config = CLIPTextConfig.from_pretrained(config_name, local_files_only=local_files_only)
    except Exception:
        raise ValueError(
            f"With local_files_only set to {local_files_only}, you must first locally save the configuration in the following path: 'openai/clip-vit-large-patch14'."
        )

    ctx = init_empty_weights if is_accelerate_available() else nullcontext
    with ctx():
        text_model = CLIPTextModel(config)

    keys = list(checkpoint.keys())
    text_model_dict = {}

    remove_prefixes = LDM_CLIP_PREFIX_TO_REMOVE

    for key in keys:
        for prefix in remove_prefixes:
            if key.startswith(prefix):
                diffusers_key = key.replace(prefix, "")
                text_model_dict[diffusers_key] = checkpoint[key]

    if is_accelerate_available():
        from ..models.modeling_utils import load_model_dict_into_meta

        unexpected_keys = load_model_dict_into_meta(text_model, text_model_dict, dtype=torch_dtype)
        if text_model._keys_to_ignore_on_load_unexpected is not None:
            for pat in text_model._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

        if len(unexpected_keys) > 0:
            logger.warn(
                f"Some weights of the model checkpoint were not used when initializing {text_model.__class__.__name__}: \n {[', '.join(unexpected_keys)]}"
            )
    else:
        if not (hasattr(text_model, "embeddings") and hasattr(text_model.embeddings.position_ids)):
            text_model_dict.pop("text_model.embeddings.position_ids", None)

        text_model.load_state_dict(text_model_dict)

    if torch_dtype is not None:
        text_model = text_model.to(torch_dtype)

    return text_model


def create_text_encoder_from_open_clip_checkpoint(
    config_name,
    checkpoint,
    prefix="cond_stage_model.model.",
    has_projection=False,
    local_files_only=False,
    torch_dtype=None,
    **config_kwargs,
):
    try:
        config = CLIPTextConfig.from_pretrained(config_name, **config_kwargs, local_files_only=local_files_only)
    except Exception:
        raise ValueError(
            f"With local_files_only set to {local_files_only}, you must first locally save the configuration in the following path: '{config_name}'."
        )

    ctx = init_empty_weights if is_accelerate_available() else nullcontext
    with ctx():
        text_model = CLIPTextModelWithProjection(config) if has_projection else CLIPTextModel(config)

    text_model_dict = {}
    text_proj_key = prefix + "text_projection"
    text_proj_dim = (
        int(checkpoint[text_proj_key].shape[0]) if text_proj_key in checkpoint else LDM_OPEN_CLIP_TEXT_PROJECTION_DIM
    )
    text_model_dict["text_model.embeddings.position_ids"] = text_model.text_model.embeddings.get_buffer("position_ids")

    keys = list(checkpoint.keys())
    keys_to_ignore = SD_2_TEXT_ENCODER_KEYS_TO_IGNORE

    openclip_diffusers_ldm_map = DIFFUSERS_TO_LDM_MAPPING["openclip"]["layers"]
    for diffusers_key, ldm_key in openclip_diffusers_ldm_map.items():
        ldm_key = prefix + ldm_key
        if ldm_key not in checkpoint:
            continue
        if ldm_key in keys_to_ignore:
            continue
        if ldm_key.endswith("text_projection"):
            text_model_dict[diffusers_key] = checkpoint[ldm_key].T.contiguous()
        else:
            text_model_dict[diffusers_key] = checkpoint[ldm_key]

    for key in keys:
        if key in keys_to_ignore:
            continue

        if not key.startswith(prefix + "transformer."):
            continue

        diffusers_key = key.replace(prefix + "transformer.", "")
        transformer_diffusers_to_ldm_map = DIFFUSERS_TO_LDM_MAPPING["openclip"]["transformer"]
        for new_key, old_key in transformer_diffusers_to_ldm_map.items():
            diffusers_key = (
                diffusers_key.replace(old_key, new_key).replace(".in_proj_weight", "").replace(".in_proj_bias", "")
            )

        if key.endswith(".in_proj_weight"):
            weight_value = checkpoint[key]

            text_model_dict[diffusers_key + ".q_proj.weight"] = weight_value[:text_proj_dim, :]
            text_model_dict[diffusers_key + ".k_proj.weight"] = weight_value[text_proj_dim : text_proj_dim * 2, :]
            text_model_dict[diffusers_key + ".v_proj.weight"] = weight_value[text_proj_dim * 2 :, :]

        elif key.endswith(".in_proj_bias"):
            weight_value = checkpoint[key]
            text_model_dict[diffusers_key + ".q_proj.bias"] = weight_value[:text_proj_dim]
            text_model_dict[diffusers_key + ".k_proj.bias"] = weight_value[text_proj_dim : text_proj_dim * 2]
            text_model_dict[diffusers_key + ".v_proj.bias"] = weight_value[text_proj_dim * 2 :]
        else:
            text_model_dict[diffusers_key] = checkpoint[key]

    if is_accelerate_available():
        from ..models.modeling_utils import load_model_dict_into_meta

        unexpected_keys = load_model_dict_into_meta(text_model, text_model_dict, dtype=torch_dtype)
        if text_model._keys_to_ignore_on_load_unexpected is not None:
            for pat in text_model._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

        if len(unexpected_keys) > 0:
            logger.warn(
                f"Some weights of the model checkpoint were not used when initializing {text_model.__class__.__name__}: \n {[', '.join(unexpected_keys)]}"
            )

    else:
        if not (hasattr(text_model, "embeddings") and hasattr(text_model.embeddings.position_ids)):
            text_model_dict.pop("text_model.embeddings.position_ids", None)

        text_model.load_state_dict(text_model_dict)

    if torch_dtype is not None:
        text_model = text_model.to(torch_dtype)

    return text_model


def create_diffusers_unet_model_from_ldm(
    pipeline_class_name,
    original_config,
    checkpoint,
    num_in_channels=None,
    upcast_attention=False,
    extract_ema=False,
    image_size=None,
    torch_dtype=None,
    model_type=None,
):
    from ..models import UNet2DConditionModel

    if num_in_channels is None:
        if pipeline_class_name in [
            "StableDiffusionInpaintPipeline",
            "StableDiffusionControlNetInpaintPipeline",
            "StableDiffusionXLInpaintPipeline",
            "StableDiffusionXLControlNetInpaintPipeline",
        ]:
            num_in_channels = 9

        elif pipeline_class_name == "StableDiffusionUpscalePipeline":
            num_in_channels = 7

        else:
            num_in_channels = 4

    image_size = set_image_size(
        pipeline_class_name, original_config, checkpoint, image_size=image_size, model_type=model_type
    )
    unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
    unet_config["in_channels"] = num_in_channels
    unet_config["upcast_attention"] = upcast_attention

    diffusers_format_unet_checkpoint = convert_ldm_unet_checkpoint(checkpoint, unet_config, extract_ema=extract_ema)
    ctx = init_empty_weights if is_accelerate_available() else nullcontext

    with ctx():
        unet = UNet2DConditionModel(**unet_config)

    if is_accelerate_available():
        from ..models.modeling_utils import load_model_dict_into_meta

        unexpected_keys = load_model_dict_into_meta(unet, diffusers_format_unet_checkpoint, dtype=torch_dtype)
        if unet._keys_to_ignore_on_load_unexpected is not None:
            for pat in unet._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

        if len(unexpected_keys) > 0:
            logger.warn(
                f"Some weights of the model checkpoint were not used when initializing {unet.__name__}: \n {[', '.join(unexpected_keys)]}"
            )
    else:
        unet.load_state_dict(diffusers_format_unet_checkpoint)

    if torch_dtype is not None:
        unet = unet.to(torch_dtype)

    return {"unet": unet}


def create_diffusers_vae_model_from_ldm(
    pipeline_class_name,
    original_config,
    checkpoint,
    image_size=None,
    scaling_factor=None,
    torch_dtype=None,
    model_type=None,
):
    # import here to avoid circular imports
    from ..models import AutoencoderKL

    image_size = set_image_size(
        pipeline_class_name, original_config, checkpoint, image_size=image_size, model_type=model_type
    )
    model_type = infer_model_type(original_config, checkpoint, model_type)

    if model_type == "Playground":
        edm_mean = (
            checkpoint["edm_mean"].to(dtype=torch_dtype).tolist() if torch_dtype else checkpoint["edm_mean"].tolist()
        )
        edm_std = (
            checkpoint["edm_std"].to(dtype=torch_dtype).tolist() if torch_dtype else checkpoint["edm_std"].tolist()
        )
    else:
        edm_mean = None
        edm_std = None

    vae_config = create_vae_diffusers_config(
        original_config,
        image_size=image_size,
        scaling_factor=scaling_factor,
        latents_mean=edm_mean,
        latents_std=edm_std,
    )
    diffusers_format_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
    ctx = init_empty_weights if is_accelerate_available() else nullcontext

    with ctx():
        vae = AutoencoderKL(**vae_config)

    if is_accelerate_available():
        from ..models.modeling_utils import load_model_dict_into_meta

        unexpected_keys = load_model_dict_into_meta(vae, diffusers_format_vae_checkpoint, dtype=torch_dtype)
        if vae._keys_to_ignore_on_load_unexpected is not None:
            for pat in vae._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

        if len(unexpected_keys) > 0:
            logger.warn(
                f"Some weights of the model checkpoint were not used when initializing {vae.__name__}: \n {[', '.join(unexpected_keys)]}"
            )
    else:
        vae.load_state_dict(diffusers_format_vae_checkpoint)

    if torch_dtype is not None:
        vae = vae.to(torch_dtype)

    return {"vae": vae}


def create_text_encoders_and_tokenizers_from_ldm(
    original_config,
    checkpoint,
    model_type=None,
    local_files_only=False,
    torch_dtype=None,
):
    model_type = infer_model_type(original_config, checkpoint=checkpoint, model_type=model_type)

    if model_type == "FrozenOpenCLIPEmbedder":
        config_name = "stabilityai/stable-diffusion-2"
        config_kwargs = {"subfolder": "text_encoder"}

        try:
            text_encoder = create_text_encoder_from_open_clip_checkpoint(
                config_name, checkpoint, local_files_only=local_files_only, torch_dtype=torch_dtype, **config_kwargs
            )
            tokenizer = CLIPTokenizer.from_pretrained(
                config_name, subfolder="tokenizer", local_files_only=local_files_only
            )
        except Exception:
            raise ValueError(
                f"With local_files_only set to {local_files_only}, you must first locally save the text_encoder in the following path: '{config_name}'."
            )
        else:
            return {"text_encoder": text_encoder, "tokenizer": tokenizer}

    elif model_type == "FrozenCLIPEmbedder":
        try:
            config_name = "openai/clip-vit-large-patch14"
            text_encoder = create_text_encoder_from_ldm_clip_checkpoint(
                config_name,
                checkpoint,
                local_files_only=local_files_only,
                torch_dtype=torch_dtype,
            )
            tokenizer = CLIPTokenizer.from_pretrained(config_name, local_files_only=local_files_only)

        except Exception:
            raise ValueError(
                f"With local_files_only set to {local_files_only}, you must first locally save the tokenizer in the following path: '{config_name}'."
            )
        else:
            return {"text_encoder": text_encoder, "tokenizer": tokenizer}

    elif model_type == "SDXL-Refiner":
        config_name = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
        config_kwargs = {"projection_dim": 1280}
        prefix = "conditioner.embedders.0.model."

        try:
            tokenizer_2 = CLIPTokenizer.from_pretrained(config_name, pad_token="!", local_files_only=local_files_only)
            text_encoder_2 = create_text_encoder_from_open_clip_checkpoint(
                config_name,
                checkpoint,
                prefix=prefix,
                has_projection=True,
                local_files_only=local_files_only,
                torch_dtype=torch_dtype,
                **config_kwargs,
            )
        except Exception:
            raise ValueError(
                f"With local_files_only set to {local_files_only}, you must first locally save the text_encoder_2 and tokenizer_2 in the following path: {config_name} with `pad_token` set to '!'."
            )

        else:
            return {
                "text_encoder": None,
                "tokenizer": None,
                "tokenizer_2": tokenizer_2,
                "text_encoder_2": text_encoder_2,
            }

    elif model_type in ["SDXL", "Playground"]:
        try:
            config_name = "openai/clip-vit-large-patch14"
            tokenizer = CLIPTokenizer.from_pretrained(config_name, local_files_only=local_files_only)
            text_encoder = create_text_encoder_from_ldm_clip_checkpoint(
                config_name, checkpoint, local_files_only=local_files_only, torch_dtype=torch_dtype
            )

        except Exception:
            raise ValueError(
                f"With local_files_only set to {local_files_only}, you must first locally save the text_encoder and tokenizer in the following path: 'openai/clip-vit-large-patch14'."
            )

        try:
            config_name = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
            config_kwargs = {"projection_dim": 1280}
            prefix = "conditioner.embedders.1.model."
            tokenizer_2 = CLIPTokenizer.from_pretrained(config_name, pad_token="!", local_files_only=local_files_only)
            text_encoder_2 = create_text_encoder_from_open_clip_checkpoint(
                config_name,
                checkpoint,
                prefix=prefix,
                has_projection=True,
                local_files_only=local_files_only,
                torch_dtype=torch_dtype,
                **config_kwargs,
            )
        except Exception:
            raise ValueError(
                f"With local_files_only set to {local_files_only}, you must first locally save the text_encoder_2 and tokenizer_2 in the following path: {config_name} with `pad_token` set to '!'."
            )

        return {
            "tokenizer": tokenizer,
            "text_encoder": text_encoder,
            "tokenizer_2": tokenizer_2,
            "text_encoder_2": text_encoder_2,
        }

    return


def create_scheduler_from_ldm(
    pipeline_class_name,
    original_config,
    checkpoint,
    prediction_type=None,
    scheduler_type="ddim",
    model_type=None,
):
    scheduler_config = get_default_scheduler_config()
    model_type = infer_model_type(original_config, checkpoint=checkpoint, model_type=model_type)

    global_step = checkpoint["global_step"] if "global_step" in checkpoint else None

    num_train_timesteps = getattr(original_config["model"]["params"], "timesteps", None) or 1000
    scheduler_config["num_train_timesteps"] = num_train_timesteps

    if (
        "parameterization" in original_config["model"]["params"]
        and original_config["model"]["params"]["parameterization"] == "v"
    ):
        if prediction_type is None:
            # NOTE: For stable diffusion 2 base it is recommended to pass `prediction_type=="epsilon"`
            # as it relies on a brittle global step parameter here
            prediction_type = "epsilon" if global_step == 875000 else "v_prediction"

    else:
        prediction_type = prediction_type or "epsilon"

    scheduler_config["prediction_type"] = prediction_type

    if model_type in ["SDXL", "SDXL-Refiner"]:
        scheduler_type = "euler"
    elif model_type == "Playground":
        scheduler_type = "edm_dpm_solver_multistep"
    else:
        beta_start = original_config["model"]["params"].get("linear_start", 0.02)
        beta_end = original_config["model"]["params"].get("linear_end", 0.085)
        scheduler_config["beta_start"] = beta_start
        scheduler_config["beta_end"] = beta_end
        scheduler_config["beta_schedule"] = "scaled_linear"
        scheduler_config["clip_sample"] = False
        scheduler_config["set_alpha_to_one"] = False

    if scheduler_type == "pndm":
        scheduler_config["skip_prk_steps"] = True
        scheduler = PNDMScheduler.from_config(scheduler_config)

    elif scheduler_type == "lms":
        scheduler = LMSDiscreteScheduler.from_config(scheduler_config)

    elif scheduler_type == "heun":
        scheduler = HeunDiscreteScheduler.from_config(scheduler_config)

    elif scheduler_type == "euler":
        scheduler = EulerDiscreteScheduler.from_config(scheduler_config)

    elif scheduler_type == "euler-ancestral":
        scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config)

    elif scheduler_type == "dpm":
        scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config)

    elif scheduler_type == "ddim":
        scheduler = DDIMScheduler.from_config(scheduler_config)

    elif scheduler_type == "edm_dpm_solver_multistep":
        scheduler_config = {
            "algorithm_type": "dpmsolver++",
            "dynamic_thresholding_ratio": 0.995,
            "euler_at_final": False,
            "final_sigmas_type": "zero",
            "lower_order_final": True,
            "num_train_timesteps": 1000,
            "prediction_type": "epsilon",
            "rho": 7.0,
            "sample_max_value": 1.0,
            "sigma_data": 0.5,
            "sigma_max": 80.0,
            "sigma_min": 0.002,
            "solver_order": 2,
            "solver_type": "midpoint",
            "thresholding": False,
        }
        scheduler = EDMDPMSolverMultistepScheduler(**scheduler_config)

    else:
        raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")

    if pipeline_class_name == "StableDiffusionUpscalePipeline":
        scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-x4-upscaler", subfolder="scheduler")
        low_res_scheduler = DDPMScheduler.from_pretrained(
            "stabilityai/stable-diffusion-x4-upscaler", subfolder="low_res_scheduler"
        )

        return {
            "scheduler": scheduler,
            "low_res_scheduler": low_res_scheduler,
        }

    return {"scheduler": scheduler}