File size: 32,060 Bytes
dbc58fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49e113b
a8335ab
 
 
 
 
 
 
 
 
 
 
 
49e113b
 
a8335ab
 
dbc58fe
a8335ab
 
 
 
 
 
 
 
 
dbc58fe
a8335ab
 
 
 
 
 
dbc58fe
 
a8335ab
dbc58fe
 
a8335ab
 
 
dbc58fe
 
 
a8335ab
49e113b
 
a94f8ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8335ab
 
a94f8ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8335ab
49e113b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a94f8ec
dbc58fe
 
49e113b
dbc58fe
 
 
a8335ab
dbc58fe
49e113b
dbc58fe
 
49e113b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbc58fe
a8335ab
 
 
 
 
49e113b
 
 
 
 
 
 
 
 
a8335ab
 
49e113b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
# import gradio as gr
# import os
# from mistralai.client import MistralClient
# from mistralai.models.chat_completion import ChatMessage

# # Ensure the environment variable for the API key is set
# api_key = os.getenv("MISTRAL_API_KEY")
# if not api_key:
#     raise ValueError("MISTRAL_API_KEY environment variable not set")

# model = "mistral-tiny"
# client = MistralClient(api_key=api_key)

# def generate_goals(input_var):
#     messages = [
#         ChatMessage(role="user", content=f"Generate 10 specific, industry relevant goals for {input_var} using Python and Pandas. Each goal should include a brief name and a one-sentence description of the task or skill. Focus on practical applications in educational assessment, covering areas such as data processing, statistical analysis, visualization, and advanced techniques")
#     ]

#     try:
#         response = client.chat(model=model, messages=messages)
#         content = response.choices[0].message.content
#         return content
#     except Exception as e:
#         return f"An error occurred: {str(e)}"

# # HTML content
# html_content = """
# <!DOCTYPE html>
# <html lang="en">
# <head>
#     <meta charset="UTF-8">
#     <meta name="viewport" content="width=device-width, initial-scale=1.0">
#     <title>Comprehensive Exam Data Analysis with Pandas - 30 Industry Goals with Connections</title>
#     <script src="https://cdnjs.cloudflare.com/ajax/libs/d3/7.8.5/d3.min.js"></script>
#     <style>
#         body { font-family: Arial, sans-serif; margin: 20px; }
#         #goalSpace { border: 1px solid #ccc; margin-bottom: 20px; }
#         .goal { cursor: pointer; }
#         #info { margin-top: 20px; font-weight: bold; }
#         #selectedGoal { margin-top: 10px; padding: 10px; border: 1px solid #ccc; background-color: #f0f0f0; }
#         #hoverInfo { 
#             position: absolute; 
#             padding: 10px; 
#             background-color: rgba(255, 255, 255, 0.9); 
#             border: 1px solid #ccc; 
#             border-radius: 5px; 
#             font-size: 14px;
#             max-width: 300px;
#             display: none;
#         }
#         #responseBox {
#             margin-top: 20px;
#             padding: 10px;
#             border: 1px solid #ccc;
#             background-color: #e0f7fa;
#         }
#     </style>
# </head>
# <body>
#     <h1>Comprehensive Exam Data Analysis with Pandas - 30 Industry Goals with Connections</h1>
#     <div id="goalSpace"></div>
#     <div id="info"></div>
#     <div id="selectedGoal"></div>
#     <div id="hoverInfo"></div>
#     <div id="responseBox"></div>

#     <script>
#         const width = 1200;
#         const height = 800;
#         // Define the goals and connections data
#         const goals = [
#             { id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
#             { id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
#             { id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
#             { id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." },
#             { id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." },
#             { id: 6, x: 200, y: 500, name: "Data Filtering", description: "Implement advanced filtering techniques to segment exam data based on various criteria (e.g., demographic info, score ranges) using boolean indexing and query() method in Pandas." },
#             { id: 7, x: 300, y: 600, name: "Reporting Automation", description: "Develop automated reporting systems that use Pandas groupby() and agg() functions to generate summary statistics and performance reports for different exam cohorts." },
#             { id: 8, x: 400, y: 500, name: "Data Visualization", description: "Create interactive dashboards for exam data visualization using Pandas with Plotly or Bokeh, allowing stakeholders to explore results dynamically." },
#             { id: 9, x: 500, y: 600, name: "Time Series Analysis", description: "Implement time series analysis techniques using Pandas datetime functionality to track and forecast exam performance trends over multiple test administrations." },
#             { id: 10, x: 300, y: 400, name: "Data Integration", description: "Develop processes to merge exam data with other relevant datasets (e.g., student information systems, learning management systems) using Pandas merge() and join() operations." },
#             { id: 11, x: 600, y: 300, name: "Performance Optimization", description: "Improve the efficiency of Pandas operations on large exam datasets by utilizing techniques like chunking, multiprocessing, and query optimization." },
#             { id: 12, x: 700, y: 400, name: "Machine Learning Integration", description: "Integrate machine learning models with Pandas for predictive analytics, such as predicting exam success or identifying at-risk students based on historical data." },
#             { id: 13, x: 800, y: 500, name: "Custom Indexing", description: "Implement custom indexing strategies in Pandas to efficiently handle hierarchical exam data structures and improve data access patterns." },
#             { id: 14, x: 900, y: 400, name: "Data Anonymization", description: "Develop Pandas-based workflows to anonymize sensitive exam data, ensuring compliance with privacy regulations while maintaining data utility for analysis." },
#             { id: 15, x: 1000, y: 300, name: "Exam Item Analysis", description: "Create specialized functions using Pandas to perform detailed item analysis, including distractor analysis and reliability calculations for individual exam questions." },
#             { id: 16, x: 600, y: 500, name: "Longitudinal Analysis", description: "Implement Pandas-based methods for tracking student performance across multiple exams over time, identifying learning trends and progress patterns." },
#             { id: 17, x: 700, y: 600, name: "Adaptive Testing Analysis", description: "Develop analysis pipelines using Pandas to evaluate and optimize adaptive testing algorithms, including item selection strategies and scoring methods." },
#             { id: 18, x: 800, y: 700, name: "Exam Equating", description: "Create Pandas workflows to perform exam equating, ensuring comparability of scores across different versions or administrations of an exam." },
#             { id: 19, x: 900, y: 600, name: "Response Time Analysis", description: "Utilize Pandas to analyze exam response times, identifying patterns that may indicate guessing, test-taking strategies, or item difficulty." },
#             { id: 20, x: 1000, y: 500, name: "Collaborative Filtering", description: "Implement collaborative filtering techniques using Pandas to recommend study materials or practice questions based on exam performance patterns." },
#             { id: 21, x: 400, y: 700, name: "Exam Fraud Detection", description: "Develop anomaly detection algorithms using Pandas to identify potential exam fraud or unusual response patterns in large-scale testing programs." },
#             { id: 22, x: 500, y: 800, name: "Standard Setting", description: "Create Pandas-based tools to assist in standard setting processes, analyzing expert judgments and examinee data to establish performance standards." },
#             { id: 23, x: 600, y: 700, name: "Automated Reporting", description: "Implement automated report generation using Pandas and libraries like Jinja2 to create customized, data-driven exam reports for various stakeholders." },
#             { id: 24, x: 700, y: 800, name: "Cross-validation", description: "Develop cross-validation frameworks using Pandas to assess the reliability and generalizability of predictive models in educational assessment contexts." },
#             { id: 25, x: 800, y: 300, name: "API Integration", description: "Create Pandas-based interfaces to integrate exam data analysis workflows with external APIs, facilitating real-time data exchange and reporting." },
#             { id: 26, x: 900, y: 200, name: "Natural Language Processing", description: "Implement NLP techniques using Pandas and libraries like NLTK to analyze free-text responses in exams, enabling automated scoring and content analysis." },
#             { id: 27, x: 1000, y: 100, name: "Exam Blueprint Analysis", description: "Develop Pandas workflows to analyze exam blueprints, ensuring content coverage and alignment with learning objectives across multiple test forms." },
#             { id: 28, x: 100, y: 600, name: "Differential Item Functioning", description: "Implement statistical methods using Pandas to detect and analyze differential item functioning (DIF) in exams, ensuring fairness across different demographic groups." },
#             { id: 29, x: 200, y: 700, name: "Automated Feedback Generation", description: "Create Pandas-based systems to generate personalized feedback for test-takers based on their exam performance and identified areas for improvement." },
#             { id: 30, x: 300, y: 800, name: "Exam Security Analysis", description: "Develop analytical tools using Pandas to assess and enhance exam security, including analysis of item exposure rates and detection of potential security breaches." }
#         ];
#         const connections = [
#             { source: 1, target: 2 },
#             { source: 2, target: 3 },
#             { source: 3, target: 4 },
#             { source: 4, target: 5 },
#             { source: 5, target: 7 },
#             { source: 6, target: 7 },
#             { source: 7, target: 8 },
#             { source: 8, target: 9 },
#             { source: 9, target: 16 },
#             { source: 10, target: 13 },
#             { source: 11, target: 12 },
#             { source: 12, target: 20 },
#             { source: 13, target: 16 },
#             { source: 14, target: 21 },
#             { source: 15, target: 17 },
#             { source: 16, target: 18 },
#             { source: 17, target: 19 },
#             { source: 18, target: 22 },
#             { source: 19, target: 21 },
#             { source: 20, target: 29 },
#             { source: 21, target: 30 },
#             { source: 22, target: 23 },
#             { source: 23, target: 25 },
#             { source: 24, target: 12 },
#             { source: 25, target: 23 },
#             { source: 26, target: 15 },
#             { source: 27, target: 15 },
#             { source: 28, target: 22 },
#             { source: 29, target: 23 },
#             { source: 30, target: 21 },
#             // Additional connections for more interconnectivity
#             { source: 1, target: 10 },
#             { source: 2, target: 6 },
#             { source: 3, target: 13 },
#             { source: 4, target: 15 },
#             { source: 5, target: 28 },
#             { source: 8, target: 23 },
#             { source: 11, target: 25 },
#             { source: 14, target: 30 },
#             { source: 24, target: 17 },
#             { source: 26, target: 29 }
#         ];

        
#         // Create the SVG container for the goals and connections
#         const svg = d3.select("#goalSpace")
#             .append("svg")
#             .attr("width", width)
#             .attr("height", height);
        
#         // Draw connections between goals
#         const links = svg.selectAll("line")
#             .data(connections)
#             .enter()
#             .append("line")
#             .attr("x1", d => goals.find(g => g.id === d.source).x)
#             .attr("y1", d => goals.find(g => g.id === d.source).y)
#             .attr("x2", d => goals.find(g => g.id === d.target).x)
#             .attr("y2", d => goals.find(g => g.id === d.target).y)
#             .attr("stroke", "#999")
#             .attr("stroke-width", 1)
#             .attr("stroke-opacity", 0.6);
        
#         // Draw goal nodes
#         const goalNodes = svg.selectAll("circle")
#             .data(goals)
#             .enter()
#             .append("circle")
#             .attr("cx", d => d.x)
#             .attr("cy", d => d.y)
#             .attr("r", 10)
#             .attr("fill", d => {
#                 if (d.id <= 10) return "blue";
#                 if (d.id <= 20) return "green";
#                 return "orange";
#             })
#             .attr("class", "goal");
        
#         // Add labels to the goals
#         const goalLabels = svg.selectAll("text")
#             .data(goals)
#             .enter()
#             .append("text")
#             .attr("x", d => d.x + 15)
#             .attr("y", d => d.y)
#             .text(d => d.name)
#             .attr("font-size", "12px");
        
#         // Hover info box
#         const hoverInfo = d3.select("#hoverInfo");
        
#         // Add hover effects on goal nodes
#         goalNodes.on("mouseover", function(event, d) {
#             d3.select(this).attr("r", 15);
#             hoverInfo.style("display", "block")
#                 .style("left", (event.pageX + 10) + "px")
#                 .style("top", (event.pageY - 10) + "px")
#                 .html(`<strong>${d.name}</strong><br>${d.description}`);
#         }).on("mouseout", function() {
#             d3.select(this).attr("r", 10);
#             hoverInfo.style("display", "none");
#         });
        
#         // Handle click event on goal nodes
#         goalNodes.on("click", async function(event, d) {
#             updateSelectedGoalInfo(d);
            
#             try {
#                 const response = await fetch('generate_goals', {
#                     method: 'POST',
#                     headers: {
#                         'Content-Type': 'application/json',
#                     },
#                     body: JSON.stringify({ input_var: d.name })
#                 });
                
#                 if (!response.ok) {
#                     throw new Error(`HTTP error! status: ${response.status}`);
#                 }
                
#                 const data = await response.json();
#                 displayResponse(data.content);
#             } catch (error) {
#                 console.error("There was an error fetching the response:", error);
#                 displayResponse("An error occurred while generating the response.");
#             }
#         });
        
#         // Function to update selected goal information
#         function updateSelectedGoalInfo(goal) {
#             const selectedGoalDiv = d3.select("#selectedGoal");
#             selectedGoalDiv.html(`
#                 <h3>${goal.name}</h3>
#                 <p>${goal.description}</p>
#             `);
#         }
        
#         // Function to display the response from the server
#         function displayResponse(content) {
#             const responseBox = d3.select("#responseBox");
#             responseBox.html(`
#                 <h2>Response</h2>
#                 <p>${content}</p>
#             `);
#         }
        
#         // Handle mouse move event to highlight the closest goal
#         svg.on("mousemove", function(event) {
#             const [x, y] = d3.pointer(event);
#             const closest = findClosestGoal(x, y);
#             highlightClosestGoal(closest);
#         });
        
#         // Function to find the closest goal to the mouse pointer
#         function findClosestGoal(x, y) {
#             return goals.reduce((closest, goal) => {
#                 const distance = Math.sqrt(Math.pow(goal.x - x, 2) + Math.pow(goal.y - y, 2));
#                 return distance < closest.distance ? { goal, distance } : closest;
#             }, { goal: null, distance: Infinity }).goal;
#         }
        
#         // Function to highlight the closest goal
#         function highlightClosestGoal(goal) {
#             d3.select("#info").html(`Closest goal: ${goal.name}`);
#         }
#     </script>
# </body>
# </html>
# """

# # Gradio interface
# iface = gr.Interface(
#     fn=generate_goals,
#     inputs=gr.Textbox(label="Goal Name"),
#     outputs=gr.Textbox(label="Generated Goals"),
#     title="Exam Data Analysis Goals Generator",
#     description="Click on a goal in the visualization to generate related goals.",
#     allow_flagging="never",
#     theme="default",
#     css=html_content
# )

# if __name__ == "__main__":
#     iface.launch()
from flask import Flask, request, jsonify, render_template_string
import os
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage

# Ensure the environment variable for the API key is set
api_key = os.getenv("MISTRAL_API_KEY")
if not api_key:
    raise ValueError("MISTRAL_API_KEY environment variable not set")

model = "mistral-tiny"
client = MistralClient(api_key=api_key)

app = Flask(__name__)

def generate_goals(input_var):
    messages = [
        ChatMessage(role="user", content=f"Generate 5 specific, industry relevant goals for {input_var} using Python and Pandas in exam data analysis. Each goal should include a brief name and a one-sentence description of the task or skill.")
    ]

    try:
        response = client.chat(model=model, messages=messages)
        content = response.choices[0].message.content
        return content
    except Exception as e:
        return f"An error occurred: {str(e)}"

# HTML content with interactive visualization
html_content = """
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Exam Data Analysis Goals Generator</title>
    <script src="https://d3js.org/d3.v7.min.js"></script>
    <style>
        #visualization { width: 100%; height: 600px; border: 1px solid #ccc; }
        #generatedGoals { margin-top: 20px; padding: 10px; border: 1px solid #ccc; }
    </style>
</head>
<body>
    <h1>Exam Data Analysis Goals Generator</h1>
    <div id="visualization"></div>
    <div id="generatedGoals"></div>
    <script>
     // Define the goals and connections data
        const goals = [
            { id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
            { id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
            { id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
            { id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." },
            { id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." },
            { id: 6, x: 200, y: 500, name: "Data Filtering", description: "Implement advanced filtering techniques to segment exam data based on various criteria (e.g., demographic info, score ranges) using boolean indexing and query() method in Pandas." },
            { id: 7, x: 300, y: 600, name: "Reporting Automation", description: "Develop automated reporting systems that use Pandas groupby() and agg() functions to generate summary statistics and performance reports for different exam cohorts." },
            { id: 8, x: 400, y: 500, name: "Data Visualization", description: "Create interactive dashboards for exam data visualization using Pandas with Plotly or Bokeh, allowing stakeholders to explore results dynamically." },
            { id: 9, x: 500, y: 600, name: "Time Series Analysis", description: "Implement time series analysis techniques using Pandas datetime functionality to track and forecast exam performance trends over multiple test administrations." },
            { id: 10, x: 300, y: 400, name: "Data Integration", description: "Develop processes to merge exam data with other relevant datasets (e.g., student information systems, learning management systems) using Pandas merge() and join() operations." },
            { id: 11, x: 600, y: 300, name: "Performance Optimization", description: "Improve the efficiency of Pandas operations on large exam datasets by utilizing techniques like chunking, multiprocessing, and query optimization." },
            { id: 12, x: 700, y: 400, name: "Machine Learning Integration", description: "Integrate machine learning models with Pandas for predictive analytics, such as predicting exam success or identifying at-risk students based on historical data." },
            { id: 13, x: 800, y: 500, name: "Custom Indexing", description: "Implement custom indexing strategies in Pandas to efficiently handle hierarchical exam data structures and improve data access patterns." },
            { id: 14, x: 900, y: 400, name: "Data Anonymization", description: "Develop Pandas-based workflows to anonymize sensitive exam data, ensuring compliance with privacy regulations while maintaining data utility for analysis." },
            { id: 15, x: 1000, y: 300, name: "Exam Item Analysis", description: "Create specialized functions using Pandas to perform detailed item analysis, including distractor analysis and reliability calculations for individual exam questions." },
            { id: 16, x: 600, y: 500, name: "Longitudinal Analysis", description: "Implement Pandas-based methods for tracking student performance across multiple exams over time, identifying learning trends and progress patterns." },
            { id: 17, x: 700, y: 600, name: "Adaptive Testing Analysis", description: "Develop analysis pipelines using Pandas to evaluate and optimize adaptive testing algorithms, including item selection strategies and scoring methods." },
            { id: 18, x: 800, y: 700, name: "Exam Equating", description: "Create Pandas workflows to perform exam equating, ensuring comparability of scores across different versions or administrations of an exam." },
            { id: 19, x: 900, y: 600, name: "Response Time Analysis", description: "Utilize Pandas to analyze exam response times, identifying patterns that may indicate guessing, test-taking strategies, or item difficulty." },
            { id: 20, x: 1000, y: 500, name: "Collaborative Filtering", description: "Implement collaborative filtering techniques using Pandas to recommend study materials or practice questions based on exam performance patterns." },
            { id: 21, x: 400, y: 700, name: "Exam Fraud Detection", description: "Develop anomaly detection algorithms using Pandas to identify potential exam fraud or unusual response patterns in large-scale testing programs." },
            { id: 22, x: 500, y: 800, name: "Standard Setting", description: "Create Pandas-based tools to assist in standard setting processes, analyzing expert judgments and examinee data to establish performance standards." },
            { id: 23, x: 600, y: 700, name: "Automated Reporting", description: "Implement automated report generation using Pandas and libraries like Jinja2 to create customized, data-driven exam reports for various stakeholders." },
            { id: 24, x: 700, y: 800, name: "Cross-validation", description: "Develop cross-validation frameworks using Pandas to assess the reliability and generalizability of predictive models in educational assessment contexts." },
            { id: 25, x: 800, y: 300, name: "API Integration", description: "Create Pandas-based interfaces to integrate exam data analysis workflows with external APIs, facilitating real-time data exchange and reporting." },
            { id: 26, x: 900, y: 200, name: "Natural Language Processing", description: "Implement NLP techniques using Pandas and libraries like NLTK to analyze free-text responses in exams, enabling automated scoring and content analysis." },
            { id: 27, x: 1000, y: 100, name: "Exam Blueprint Analysis", description: "Develop Pandas workflows to analyze exam blueprints, ensuring content coverage and alignment with learning objectives across multiple test forms." },
            { id: 28, x: 100, y: 600, name: "Differential Item Functioning", description: "Implement statistical methods using Pandas to detect and analyze differential item functioning (DIF) in exams, ensuring fairness across different demographic groups." },
            { id: 29, x: 200, y: 700, name: "Automated Feedback Generation", description: "Create Pandas-based systems to generate personalized feedback for test-takers based on their exam performance and identified areas for improvement." },
            { id: 30, x: 300, y: 800, name: "Exam Security Analysis", description: "Develop analytical tools using Pandas to assess and enhance exam security, including analysis of item exposure rates and detection of potential security breaches." }
        ];
        const connections = [
            { source: 1, target: 2 },
            { source: 2, target: 3 },
            { source: 3, target: 4 },
            { source: 4, target: 5 },
            { source: 5, target: 7 },
            { source: 6, target: 7 },
            { source: 7, target: 8 },
            { source: 8, target: 9 },
            { source: 9, target: 16 },
            { source: 10, target: 13 },
            { source: 11, target: 12 },
            { source: 12, target: 20 },
            { source: 13, target: 16 },
            { source: 14, target: 21 },
            { source: 15, target: 17 },
            { source: 16, target: 18 },
            { source: 17, target: 19 },
            { source: 18, target: 22 },
            { source: 19, target: 21 },
            { source: 20, target: 29 },
            { source: 21, target: 30 },
            { source: 22, target: 23 },
            { source: 23, target: 25 },
            { source: 24, target: 12 },
            { source: 25, target: 23 },
            { source: 26, target: 15 },
            { source: 27, target: 15 },
            { source: 28, target: 22 },
            { source: 29, target: 23 },
            { source: 30, target: 21 },
            // Additional connections for more interconnectivity
            { source: 1, target: 10 },
            { source: 2, target: 6 },
            { source: 3, target: 13 },
            { source: 4, target: 15 },
            { source: 5, target: 28 },
            { source: 8, target: 23 },
            { source: 11, target: 25 },
            { source: 14, target: 30 },
            { source: 24, target: 17 },
            { source: 26, target: 29 }
        ];
        // Create the SVG container for the goals and connections
        const svg = d3.select("#goalSpace")
            .append("svg")
            .attr("width", width)
            .attr("height", height);
        // Draw connections between goals
        const links = svg.selectAll("line")
            .data(connections)
            .enter()
            .append("line")
            .attr("x1", d => goals.find(g => g.id === d.source).x)
            .attr("y1", d => goals.find(g => g.id === d.source).y)
            .attr("x2", d => goals.find(g => g.id === d.target).x)
            .attr("y2", d => goals.find(g => g.id === d.target).y)
            .attr("stroke", "#999")
            .attr("stroke-width", 1)
            .attr("stroke-opacity", 0.6);
        // Draw goal nodes
        const goalNodes = svg.selectAll("circle")
            .data(goals)
            .enter()
            .append("circle")
            .attr("cx", d => d.x)
            .attr("cy", d => d.y)
            .attr("r", 10)
            .attr("fill", d => {
                if (d.id <= 10) return "blue";
                if (d.id <= 20) return "green";
                return "orange";
            })
            .attr("class", "goal");
        // Add labels to the goals
        const goalLabels = svg.selectAll("text")
            .data(goals)
            .enter()
            .append("text")
            .attr("x", d => d.x + 15)
            .attr("y", d => d.y)
            .text(d => d.name)
            .attr("font-size", "12px");
        // Hover info box
        const hoverInfo = d3.select("#hoverInfo");
        // Add hover effects on goal nodes
        goalNodes.on("mouseover", function(event, d) {
            d3.select(this).attr("r", 15);
            hoverInfo.style("display", "block")
                .style("left", (event.pageX + 10) + "px")
                .style("top", (event.pageY - 10) + "px")
                .html(`<strong>${d.name}</strong><br>${d.description}`);
        }).on("mouseout", function() {
            d3.select(this).attr("r", 10);
            hoverInfo.style("display", "none");
        });


    node.on("click", async function(event, d) {
        const response = await fetch('/generate_goals', {
            method: 'POST',
            headers: { 'Content-Type': 'application/json' },
            body: JSON.stringify({ input_var: d.name })
        });
        const data = await response.json();
        document.getElementById("generatedGoals").innerHTML = `<h2>Generated Goals for ${d.name}</h2><pre>${data.goals}</pre>`;
    });

    // Function to update selected goal information
        function updateSelectedGoalInfo(goal) {
            const selectedGoalDiv = d3.select("#selectedGoal");
            selectedGoalDiv.html(`
                <h3>${goal.name}</h3>
                <p>${goal.description}</p>
            `);
        }
        // Function to display the response from the server
        function displayResponse(content) {
            const responseBox = d3.select("#responseBox");
            responseBox.html(`
                <h2>Response</h2>
                <p>${content}</p>
            `);
        }
        // Handle mouse move event to highlight the closest goal
        svg.on("mousemove", function(event) {
            const [x, y] = d3.pointer(event);
            const closest = findClosestGoal(x, y);
            highlightClosestGoal(closest);
        });
        // Function to find the closest goal to the mouse pointer
        function findClosestGoal(x, y) {
            return goals.reduce((closest, goal) => {
                const distance = Math.sqrt(Math.pow(goal.x - x, 2) + Math.pow(goal.y - y, 2));
                return distance < closest.distance ? { goal, distance } : closest;
            }, { goal: null, distance: Infinity }).goal;
        }
        // Function to highlight the closest goal
        function highlightClosestGoal(goal) {
            d3.select("#info").html(`Closest goal: ${goal.name}`);
        }

    </script>
</body>
</html>
"""

@app.route('/')
def index():
    return render_template_string(html_content)

@app.route('/generate_goals', methods=['POST'])
def generate_goals_api():
    input_var = request.json['input_var']
    goals = generate_goals(input_var)
    return jsonify({'goals': goals})

if __name__ == "__main__":
    app.run(debug=True)