harris1 commited on
Commit
dbc58fe
1 Parent(s): a94f8ec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +380 -159
app.py CHANGED
@@ -1,3 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import os
3
  from mistralai.client import MistralClient
@@ -13,7 +300,7 @@ client = MistralClient(api_key=api_key)
13
 
14
  def generate_goals(input_var):
15
  messages = [
16
- ChatMessage(role="user", content=f"Generate 10 specific, industry relevant goals for {input_var} using Python and Pandas. Each goal should include a brief name and a one-sentence description of the task or skill. Focus on practical applications in educational assessment, covering areas such as data processing, statistical analysis, visualization, and advanced techniques")
17
  ]
18
 
19
  try:
@@ -23,52 +310,29 @@ def generate_goals(input_var):
23
  except Exception as e:
24
  return f"An error occurred: {str(e)}"
25
 
26
- # HTML content
27
  html_content = """
28
  <!DOCTYPE html>
29
  <html lang="en">
30
  <head>
31
  <meta charset="UTF-8">
32
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
33
- <title>Comprehensive Exam Data Analysis with Pandas - 30 Industry Goals with Connections</title>
34
- <script src="https://cdnjs.cloudflare.com/ajax/libs/d3/7.8.5/d3.min.js"></script>
35
  <style>
36
- body { font-family: Arial, sans-serif; margin: 20px; }
37
- #goalSpace { border: 1px solid #ccc; margin-bottom: 20px; }
38
- .goal { cursor: pointer; }
39
- #info { margin-top: 20px; font-weight: bold; }
40
- #selectedGoal { margin-top: 10px; padding: 10px; border: 1px solid #ccc; background-color: #f0f0f0; }
41
- #hoverInfo {
42
- position: absolute;
43
- padding: 10px;
44
- background-color: rgba(255, 255, 255, 0.9);
45
- border: 1px solid #ccc;
46
- border-radius: 5px;
47
- font-size: 14px;
48
- max-width: 300px;
49
- display: none;
50
- }
51
- #responseBox {
52
- margin-top: 20px;
53
- padding: 10px;
54
- border: 1px solid #ccc;
55
- background-color: #e0f7fa;
56
- }
57
  </style>
58
  </head>
59
  <body>
60
- <h1>Comprehensive Exam Data Analysis with Pandas - 30 Industry Goals with Connections</h1>
61
- <div id="goalSpace"></div>
62
- <div id="info"></div>
63
- <div id="selectedGoal"></div>
64
- <div id="hoverInfo"></div>
65
- <div id="responseBox"></div>
66
 
67
  <script>
68
- const width = 1200;
69
- const height = 800;
70
- // Define the goals and connections data
71
- const goals = [
72
  { id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
73
  { id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
74
  { id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
@@ -144,128 +408,86 @@ html_content = """
144
  { source: 26, target: 29 }
145
  ];
146
 
147
-
148
- // Create the SVG container for the goals and connections
149
- const svg = d3.select("#goalSpace")
150
- .append("svg")
151
- .attr("width", width)
152
- .attr("height", height);
153
-
154
- // Draw connections between goals
155
- const links = svg.selectAll("line")
156
- .data(connections)
157
- .enter()
158
- .append("line")
159
- .attr("x1", d => goals.find(g => g.id === d.source).x)
160
- .attr("y1", d => goals.find(g => g.id === d.source).y)
161
- .attr("x2", d => goals.find(g => g.id === d.target).x)
162
- .attr("y2", d => goals.find(g => g.id === d.target).y)
163
- .attr("stroke", "#999")
164
- .attr("stroke-width", 1)
165
- .attr("stroke-opacity", 0.6);
166
-
167
- // Draw goal nodes
168
- const goalNodes = svg.selectAll("circle")
169
- .data(goals)
170
- .enter()
171
- .append("circle")
172
- .attr("cx", d => d.x)
173
- .attr("cy", d => d.y)
174
- .attr("r", 10)
175
- .attr("fill", d => {
176
- if (d.id <= 10) return "blue";
177
- if (d.id <= 20) return "green";
178
- return "orange";
179
- })
180
- .attr("class", "goal");
181
-
182
- // Add labels to the goals
183
- const goalLabels = svg.selectAll("text")
184
- .data(goals)
185
- .enter()
186
- .append("text")
187
- .attr("x", d => d.x + 15)
188
- .attr("y", d => d.y)
189
- .text(d => d.name)
190
- .attr("font-size", "12px");
191
-
192
- // Hover info box
193
- const hoverInfo = d3.select("#hoverInfo");
194
-
195
- // Add hover effects on goal nodes
196
- goalNodes.on("mouseover", function(event, d) {
197
- d3.select(this).attr("r", 15);
198
- hoverInfo.style("display", "block")
199
- .style("left", (event.pageX + 10) + "px")
200
- .style("top", (event.pageY - 10) + "px")
201
- .html(`<strong>${d.name}</strong><br>${d.description}`);
202
- }).on("mouseout", function() {
203
- d3.select(this).attr("r", 10);
204
- hoverInfo.style("display", "none");
205
- });
206
-
207
- // Handle click event on goal nodes
208
- goalNodes.on("click", async function(event, d) {
209
- updateSelectedGoalInfo(d);
210
-
211
- try {
212
- const response = await fetch('generate_goals', {
213
- method: 'POST',
214
- headers: {
215
- 'Content-Type': 'application/json',
216
- },
217
- body: JSON.stringify({ input_var: d.name })
218
- });
219
-
220
- if (!response.ok) {
221
- throw new Error(`HTTP error! status: ${response.status}`);
222
- }
223
-
224
- const data = await response.json();
225
- displayResponse(data.content);
226
- } catch (error) {
227
- console.error("There was an error fetching the response:", error);
228
- displayResponse("An error occurred while generating the response.");
229
- }
230
- });
231
-
232
- // Function to update selected goal information
233
- function updateSelectedGoalInfo(goal) {
234
- const selectedGoalDiv = d3.select("#selectedGoal");
235
- selectedGoalDiv.html(`
236
- <h3>${goal.name}</h3>
237
- <p>${goal.description}</p>
238
- `);
239
- }
240
-
241
- // Function to display the response from the server
242
- function displayResponse(content) {
243
- const responseBox = d3.select("#responseBox");
244
- responseBox.html(`
245
- <h2>Response</h2>
246
- <p>${content}</p>
247
- `);
248
- }
249
-
250
- // Handle mouse move event to highlight the closest goal
251
- svg.on("mousemove", function(event) {
252
- const [x, y] = d3.pointer(event);
253
- const closest = findClosestGoal(x, y);
254
- highlightClosestGoal(closest);
255
  });
256
-
257
- // Function to find the closest goal to the mouse pointer
258
- function findClosestGoal(x, y) {
259
- return goals.reduce((closest, goal) => {
260
- const distance = Math.sqrt(Math.pow(goal.x - x, 2) + Math.pow(goal.y - y, 2));
261
- return distance < closest.distance ? { goal, distance } : closest;
262
- }, { goal: null, distance: Infinity }).goal;
263
- }
264
-
265
- // Function to highlight the closest goal
266
- function highlightClosestGoal(goal) {
267
- d3.select("#info").html(`Closest goal: ${goal.name}`);
268
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269
  </script>
270
  </body>
271
  </html>
@@ -274,12 +496,11 @@ html_content = """
274
  # Gradio interface
275
  iface = gr.Interface(
276
  fn=generate_goals,
277
- inputs=gr.Textbox(label="Goal Name"),
278
- outputs=gr.Textbox(label="Generated Goals"),
279
  title="Exam Data Analysis Goals Generator",
280
  description="Click on a goal in the visualization to generate related goals.",
281
  allow_flagging="never",
282
- theme="default",
283
  css=html_content
284
  )
285
 
 
1
+ # import gradio as gr
2
+ # import os
3
+ # from mistralai.client import MistralClient
4
+ # from mistralai.models.chat_completion import ChatMessage
5
+
6
+ # # Ensure the environment variable for the API key is set
7
+ # api_key = os.getenv("MISTRAL_API_KEY")
8
+ # if not api_key:
9
+ # raise ValueError("MISTRAL_API_KEY environment variable not set")
10
+
11
+ # model = "mistral-tiny"
12
+ # client = MistralClient(api_key=api_key)
13
+
14
+ # def generate_goals(input_var):
15
+ # messages = [
16
+ # ChatMessage(role="user", content=f"Generate 10 specific, industry relevant goals for {input_var} using Python and Pandas. Each goal should include a brief name and a one-sentence description of the task or skill. Focus on practical applications in educational assessment, covering areas such as data processing, statistical analysis, visualization, and advanced techniques")
17
+ # ]
18
+
19
+ # try:
20
+ # response = client.chat(model=model, messages=messages)
21
+ # content = response.choices[0].message.content
22
+ # return content
23
+ # except Exception as e:
24
+ # return f"An error occurred: {str(e)}"
25
+
26
+ # # HTML content
27
+ # html_content = """
28
+ # <!DOCTYPE html>
29
+ # <html lang="en">
30
+ # <head>
31
+ # <meta charset="UTF-8">
32
+ # <meta name="viewport" content="width=device-width, initial-scale=1.0">
33
+ # <title>Comprehensive Exam Data Analysis with Pandas - 30 Industry Goals with Connections</title>
34
+ # <script src="https://cdnjs.cloudflare.com/ajax/libs/d3/7.8.5/d3.min.js"></script>
35
+ # <style>
36
+ # body { font-family: Arial, sans-serif; margin: 20px; }
37
+ # #goalSpace { border: 1px solid #ccc; margin-bottom: 20px; }
38
+ # .goal { cursor: pointer; }
39
+ # #info { margin-top: 20px; font-weight: bold; }
40
+ # #selectedGoal { margin-top: 10px; padding: 10px; border: 1px solid #ccc; background-color: #f0f0f0; }
41
+ # #hoverInfo {
42
+ # position: absolute;
43
+ # padding: 10px;
44
+ # background-color: rgba(255, 255, 255, 0.9);
45
+ # border: 1px solid #ccc;
46
+ # border-radius: 5px;
47
+ # font-size: 14px;
48
+ # max-width: 300px;
49
+ # display: none;
50
+ # }
51
+ # #responseBox {
52
+ # margin-top: 20px;
53
+ # padding: 10px;
54
+ # border: 1px solid #ccc;
55
+ # background-color: #e0f7fa;
56
+ # }
57
+ # </style>
58
+ # </head>
59
+ # <body>
60
+ # <h1>Comprehensive Exam Data Analysis with Pandas - 30 Industry Goals with Connections</h1>
61
+ # <div id="goalSpace"></div>
62
+ # <div id="info"></div>
63
+ # <div id="selectedGoal"></div>
64
+ # <div id="hoverInfo"></div>
65
+ # <div id="responseBox"></div>
66
+
67
+ # <script>
68
+ # const width = 1200;
69
+ # const height = 800;
70
+ # // Define the goals and connections data
71
+ # const goals = [
72
+ # { id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
73
+ # { id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
74
+ # { id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
75
+ # { id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." },
76
+ # { id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." },
77
+ # { id: 6, x: 200, y: 500, name: "Data Filtering", description: "Implement advanced filtering techniques to segment exam data based on various criteria (e.g., demographic info, score ranges) using boolean indexing and query() method in Pandas." },
78
+ # { id: 7, x: 300, y: 600, name: "Reporting Automation", description: "Develop automated reporting systems that use Pandas groupby() and agg() functions to generate summary statistics and performance reports for different exam cohorts." },
79
+ # { id: 8, x: 400, y: 500, name: "Data Visualization", description: "Create interactive dashboards for exam data visualization using Pandas with Plotly or Bokeh, allowing stakeholders to explore results dynamically." },
80
+ # { id: 9, x: 500, y: 600, name: "Time Series Analysis", description: "Implement time series analysis techniques using Pandas datetime functionality to track and forecast exam performance trends over multiple test administrations." },
81
+ # { id: 10, x: 300, y: 400, name: "Data Integration", description: "Develop processes to merge exam data with other relevant datasets (e.g., student information systems, learning management systems) using Pandas merge() and join() operations." },
82
+ # { id: 11, x: 600, y: 300, name: "Performance Optimization", description: "Improve the efficiency of Pandas operations on large exam datasets by utilizing techniques like chunking, multiprocessing, and query optimization." },
83
+ # { id: 12, x: 700, y: 400, name: "Machine Learning Integration", description: "Integrate machine learning models with Pandas for predictive analytics, such as predicting exam success or identifying at-risk students based on historical data." },
84
+ # { id: 13, x: 800, y: 500, name: "Custom Indexing", description: "Implement custom indexing strategies in Pandas to efficiently handle hierarchical exam data structures and improve data access patterns." },
85
+ # { id: 14, x: 900, y: 400, name: "Data Anonymization", description: "Develop Pandas-based workflows to anonymize sensitive exam data, ensuring compliance with privacy regulations while maintaining data utility for analysis." },
86
+ # { id: 15, x: 1000, y: 300, name: "Exam Item Analysis", description: "Create specialized functions using Pandas to perform detailed item analysis, including distractor analysis and reliability calculations for individual exam questions." },
87
+ # { id: 16, x: 600, y: 500, name: "Longitudinal Analysis", description: "Implement Pandas-based methods for tracking student performance across multiple exams over time, identifying learning trends and progress patterns." },
88
+ # { id: 17, x: 700, y: 600, name: "Adaptive Testing Analysis", description: "Develop analysis pipelines using Pandas to evaluate and optimize adaptive testing algorithms, including item selection strategies and scoring methods." },
89
+ # { id: 18, x: 800, y: 700, name: "Exam Equating", description: "Create Pandas workflows to perform exam equating, ensuring comparability of scores across different versions or administrations of an exam." },
90
+ # { id: 19, x: 900, y: 600, name: "Response Time Analysis", description: "Utilize Pandas to analyze exam response times, identifying patterns that may indicate guessing, test-taking strategies, or item difficulty." },
91
+ # { id: 20, x: 1000, y: 500, name: "Collaborative Filtering", description: "Implement collaborative filtering techniques using Pandas to recommend study materials or practice questions based on exam performance patterns." },
92
+ # { id: 21, x: 400, y: 700, name: "Exam Fraud Detection", description: "Develop anomaly detection algorithms using Pandas to identify potential exam fraud or unusual response patterns in large-scale testing programs." },
93
+ # { id: 22, x: 500, y: 800, name: "Standard Setting", description: "Create Pandas-based tools to assist in standard setting processes, analyzing expert judgments and examinee data to establish performance standards." },
94
+ # { id: 23, x: 600, y: 700, name: "Automated Reporting", description: "Implement automated report generation using Pandas and libraries like Jinja2 to create customized, data-driven exam reports for various stakeholders." },
95
+ # { id: 24, x: 700, y: 800, name: "Cross-validation", description: "Develop cross-validation frameworks using Pandas to assess the reliability and generalizability of predictive models in educational assessment contexts." },
96
+ # { id: 25, x: 800, y: 300, name: "API Integration", description: "Create Pandas-based interfaces to integrate exam data analysis workflows with external APIs, facilitating real-time data exchange and reporting." },
97
+ # { id: 26, x: 900, y: 200, name: "Natural Language Processing", description: "Implement NLP techniques using Pandas and libraries like NLTK to analyze free-text responses in exams, enabling automated scoring and content analysis." },
98
+ # { id: 27, x: 1000, y: 100, name: "Exam Blueprint Analysis", description: "Develop Pandas workflows to analyze exam blueprints, ensuring content coverage and alignment with learning objectives across multiple test forms." },
99
+ # { id: 28, x: 100, y: 600, name: "Differential Item Functioning", description: "Implement statistical methods using Pandas to detect and analyze differential item functioning (DIF) in exams, ensuring fairness across different demographic groups." },
100
+ # { id: 29, x: 200, y: 700, name: "Automated Feedback Generation", description: "Create Pandas-based systems to generate personalized feedback for test-takers based on their exam performance and identified areas for improvement." },
101
+ # { id: 30, x: 300, y: 800, name: "Exam Security Analysis", description: "Develop analytical tools using Pandas to assess and enhance exam security, including analysis of item exposure rates and detection of potential security breaches." }
102
+ # ];
103
+ # const connections = [
104
+ # { source: 1, target: 2 },
105
+ # { source: 2, target: 3 },
106
+ # { source: 3, target: 4 },
107
+ # { source: 4, target: 5 },
108
+ # { source: 5, target: 7 },
109
+ # { source: 6, target: 7 },
110
+ # { source: 7, target: 8 },
111
+ # { source: 8, target: 9 },
112
+ # { source: 9, target: 16 },
113
+ # { source: 10, target: 13 },
114
+ # { source: 11, target: 12 },
115
+ # { source: 12, target: 20 },
116
+ # { source: 13, target: 16 },
117
+ # { source: 14, target: 21 },
118
+ # { source: 15, target: 17 },
119
+ # { source: 16, target: 18 },
120
+ # { source: 17, target: 19 },
121
+ # { source: 18, target: 22 },
122
+ # { source: 19, target: 21 },
123
+ # { source: 20, target: 29 },
124
+ # { source: 21, target: 30 },
125
+ # { source: 22, target: 23 },
126
+ # { source: 23, target: 25 },
127
+ # { source: 24, target: 12 },
128
+ # { source: 25, target: 23 },
129
+ # { source: 26, target: 15 },
130
+ # { source: 27, target: 15 },
131
+ # { source: 28, target: 22 },
132
+ # { source: 29, target: 23 },
133
+ # { source: 30, target: 21 },
134
+ # // Additional connections for more interconnectivity
135
+ # { source: 1, target: 10 },
136
+ # { source: 2, target: 6 },
137
+ # { source: 3, target: 13 },
138
+ # { source: 4, target: 15 },
139
+ # { source: 5, target: 28 },
140
+ # { source: 8, target: 23 },
141
+ # { source: 11, target: 25 },
142
+ # { source: 14, target: 30 },
143
+ # { source: 24, target: 17 },
144
+ # { source: 26, target: 29 }
145
+ # ];
146
+
147
+
148
+ # // Create the SVG container for the goals and connections
149
+ # const svg = d3.select("#goalSpace")
150
+ # .append("svg")
151
+ # .attr("width", width)
152
+ # .attr("height", height);
153
+
154
+ # // Draw connections between goals
155
+ # const links = svg.selectAll("line")
156
+ # .data(connections)
157
+ # .enter()
158
+ # .append("line")
159
+ # .attr("x1", d => goals.find(g => g.id === d.source).x)
160
+ # .attr("y1", d => goals.find(g => g.id === d.source).y)
161
+ # .attr("x2", d => goals.find(g => g.id === d.target).x)
162
+ # .attr("y2", d => goals.find(g => g.id === d.target).y)
163
+ # .attr("stroke", "#999")
164
+ # .attr("stroke-width", 1)
165
+ # .attr("stroke-opacity", 0.6);
166
+
167
+ # // Draw goal nodes
168
+ # const goalNodes = svg.selectAll("circle")
169
+ # .data(goals)
170
+ # .enter()
171
+ # .append("circle")
172
+ # .attr("cx", d => d.x)
173
+ # .attr("cy", d => d.y)
174
+ # .attr("r", 10)
175
+ # .attr("fill", d => {
176
+ # if (d.id <= 10) return "blue";
177
+ # if (d.id <= 20) return "green";
178
+ # return "orange";
179
+ # })
180
+ # .attr("class", "goal");
181
+
182
+ # // Add labels to the goals
183
+ # const goalLabels = svg.selectAll("text")
184
+ # .data(goals)
185
+ # .enter()
186
+ # .append("text")
187
+ # .attr("x", d => d.x + 15)
188
+ # .attr("y", d => d.y)
189
+ # .text(d => d.name)
190
+ # .attr("font-size", "12px");
191
+
192
+ # // Hover info box
193
+ # const hoverInfo = d3.select("#hoverInfo");
194
+
195
+ # // Add hover effects on goal nodes
196
+ # goalNodes.on("mouseover", function(event, d) {
197
+ # d3.select(this).attr("r", 15);
198
+ # hoverInfo.style("display", "block")
199
+ # .style("left", (event.pageX + 10) + "px")
200
+ # .style("top", (event.pageY - 10) + "px")
201
+ # .html(`<strong>${d.name}</strong><br>${d.description}`);
202
+ # }).on("mouseout", function() {
203
+ # d3.select(this).attr("r", 10);
204
+ # hoverInfo.style("display", "none");
205
+ # });
206
+
207
+ # // Handle click event on goal nodes
208
+ # goalNodes.on("click", async function(event, d) {
209
+ # updateSelectedGoalInfo(d);
210
+
211
+ # try {
212
+ # const response = await fetch('generate_goals', {
213
+ # method: 'POST',
214
+ # headers: {
215
+ # 'Content-Type': 'application/json',
216
+ # },
217
+ # body: JSON.stringify({ input_var: d.name })
218
+ # });
219
+
220
+ # if (!response.ok) {
221
+ # throw new Error(`HTTP error! status: ${response.status}`);
222
+ # }
223
+
224
+ # const data = await response.json();
225
+ # displayResponse(data.content);
226
+ # } catch (error) {
227
+ # console.error("There was an error fetching the response:", error);
228
+ # displayResponse("An error occurred while generating the response.");
229
+ # }
230
+ # });
231
+
232
+ # // Function to update selected goal information
233
+ # function updateSelectedGoalInfo(goal) {
234
+ # const selectedGoalDiv = d3.select("#selectedGoal");
235
+ # selectedGoalDiv.html(`
236
+ # <h3>${goal.name}</h3>
237
+ # <p>${goal.description}</p>
238
+ # `);
239
+ # }
240
+
241
+ # // Function to display the response from the server
242
+ # function displayResponse(content) {
243
+ # const responseBox = d3.select("#responseBox");
244
+ # responseBox.html(`
245
+ # <h2>Response</h2>
246
+ # <p>${content}</p>
247
+ # `);
248
+ # }
249
+
250
+ # // Handle mouse move event to highlight the closest goal
251
+ # svg.on("mousemove", function(event) {
252
+ # const [x, y] = d3.pointer(event);
253
+ # const closest = findClosestGoal(x, y);
254
+ # highlightClosestGoal(closest);
255
+ # });
256
+
257
+ # // Function to find the closest goal to the mouse pointer
258
+ # function findClosestGoal(x, y) {
259
+ # return goals.reduce((closest, goal) => {
260
+ # const distance = Math.sqrt(Math.pow(goal.x - x, 2) + Math.pow(goal.y - y, 2));
261
+ # return distance < closest.distance ? { goal, distance } : closest;
262
+ # }, { goal: null, distance: Infinity }).goal;
263
+ # }
264
+
265
+ # // Function to highlight the closest goal
266
+ # function highlightClosestGoal(goal) {
267
+ # d3.select("#info").html(`Closest goal: ${goal.name}`);
268
+ # }
269
+ # </script>
270
+ # </body>
271
+ # </html>
272
+ # """
273
+
274
+ # # Gradio interface
275
+ # iface = gr.Interface(
276
+ # fn=generate_goals,
277
+ # inputs=gr.Textbox(label="Goal Name"),
278
+ # outputs=gr.Textbox(label="Generated Goals"),
279
+ # title="Exam Data Analysis Goals Generator",
280
+ # description="Click on a goal in the visualization to generate related goals.",
281
+ # allow_flagging="never",
282
+ # theme="default",
283
+ # css=html_content
284
+ # )
285
+
286
+ # if __name__ == "__main__":
287
+ # iface.launch()
288
  import gradio as gr
289
  import os
290
  from mistralai.client import MistralClient
 
300
 
301
  def generate_goals(input_var):
302
  messages = [
303
+ ChatMessage(role="user", content=f"Generate 5 specific, industry relevant goals for {input_var} using Python and Pandas in exam data analysis. Each goal should include a brief name and a one-sentence description of the task or skill.")
304
  ]
305
 
306
  try:
 
310
  except Exception as e:
311
  return f"An error occurred: {str(e)}"
312
 
313
+ # HTML content with interactive visualization
314
  html_content = """
315
  <!DOCTYPE html>
316
  <html lang="en">
317
  <head>
318
  <meta charset="UTF-8">
319
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
320
+ <title>Exam Data Analysis Goals Generator</title>
321
+ <script src="https://d3js.org/d3.v7.min.js"></script>
322
  <style>
323
+ #visualization { width: 100%; height: 600px; border: 1px solid #ccc; }
324
+ #generatedGoals { margin-top: 20px; padding: 10px; border: 1px solid #ccc; }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325
  </style>
326
  </head>
327
  <body>
328
+ <h1>Exam Data Analysis Goals Generator</h1>
329
+ <div id="visualization"></div>
330
+ <div id="generatedGoals"></div>
 
 
 
331
 
332
  <script>
333
+ const width = 1200;
334
+ const height = 800;
335
+ const goals = [
 
336
  { id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
337
  { id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
338
  { id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
 
408
  { source: 26, target: 29 }
409
  ];
410
 
411
+
412
+ const svg = d3.select("#visualization")
413
+ .append("svg")
414
+ .attr("width", width)
415
+ .attr("height", height);
416
+
417
+ const simulation = d3.forceSimulation(goals)
418
+ .force("link", d3.forceLink(connections).id(d => d.id))
419
+ .force("charge", d3.forceManyBody().strength(-400))
420
+ .force("center", d3.forceCenter(width / 2, height / 2));
421
+
422
+ const link = svg.append("g")
423
+ .selectAll("line")
424
+ .data(connections)
425
+ .enter().append("line")
426
+ .attr("stroke", "#999")
427
+ .attr("stroke-opacity", 0.6);
428
+
429
+ const node = svg.append("g")
430
+ .selectAll("circle")
431
+ .data(goals)
432
+ .enter().append("circle")
433
+ .attr("r", 10)
434
+ .attr("fill", d => d.color)
435
+ .call(d3.drag()
436
+ .on("start", dragstarted)
437
+ .on("drag", dragged)
438
+ .on("end", dragended));
439
+
440
+ const text = svg.append("g")
441
+ .selectAll("text")
442
+ .data(goals)
443
+ .enter().append("text")
444
+ .text(d => d.name)
445
+ .attr("font-size", "12px")
446
+ .attr("dx", 12)
447
+ .attr("dy", 4);
448
+
449
+ node.on("click", async function(event, d) {
450
+ const response = await fetch('generate_goals', {
451
+ method: 'POST',
452
+ headers: { 'Content-Type': 'application/json' },
453
+ body: JSON.stringify({ input_var: d.name })
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454
  });
455
+ const data = await response.json();
456
+ document.getElementById("generatedGoals").innerHTML = `<h2>Generated Goals for ${d.name}</h2><pre>${data}</pre>`;
457
+ });
458
+
459
+ simulation.on("tick", () => {
460
+ link
461
+ .attr("x1", d => d.source.x)
462
+ .attr("y1", d => d.source.y)
463
+ .attr("x2", d => d.target.x)
464
+ .attr("y2", d => d.target.y);
465
+
466
+ node
467
+ .attr("cx", d => d.x)
468
+ .attr("cy", d => d.y);
469
+
470
+ text
471
+ .attr("x", d => d.x)
472
+ .attr("y", d => d.y);
473
+ });
474
+
475
+ function dragstarted(event) {
476
+ if (!event.active) simulation.alphaTarget(0.3).restart();
477
+ event.subject.fx = event.subject.x;
478
+ event.subject.fy = event.subject.y;
479
+ }
480
+
481
+ function dragged(event) {
482
+ event.subject.fx = event.x;
483
+ event.subject.fy = event.y;
484
+ }
485
+
486
+ function dragended(event) {
487
+ if (!event.active) simulation.alphaTarget(0);
488
+ event.subject.fx = null;
489
+ event.subject.fy = null;
490
+ }
491
  </script>
492
  </body>
493
  </html>
 
496
  # Gradio interface
497
  iface = gr.Interface(
498
  fn=generate_goals,
499
+ inputs=gr.Textbox(visible=False),
500
+ outputs=gr.Textbox(visible=False),
501
  title="Exam Data Analysis Goals Generator",
502
  description="Click on a goal in the visualization to generate related goals.",
503
  allow_flagging="never",
 
504
  css=html_content
505
  )
506