File size: 18,228 Bytes
ae926ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
#####################################################
# AST Composite Server Double Two
# By Guillaume Descoteaux-Isabelle, 20021
#
# This server compose two Adaptive Style Transfer model (output of the first pass serve as input to the second using the same model)
########################################################
#v1-dev
#Receive the 2 res from arguments in the request...


import os
import numpy as np
import tensorflow as tf
import cv2
from module import encoder, decoder
from glob import glob
import runway
from runway.data_types import number, text


#from utils import *
import scipy
from datetime import datetime
import time


import re


SRV_TYPE="s1"

#set env var RW_ if not already set
if not os.getenv('RW_PORT'):
    os.environ["RW_PORT"] = "7860"

if not os.getenv('RW_DEBUG'):
    os.environ["RW_DEBUG"] = "0"
if not os.getenv('RW_HOST'):
    os.environ["RW_HOST"] = "0.0.0.0"
#RW_MODEL_OPTIONS
if not os.getenv('RW_MODEL_OPTIONS'):
    os.environ["RW_MODEL_OPTIONS"]='{"styleCheckpoint":"/data/styleCheckpoint"}'

# Determining the size of the passes
pass1_image_size = 1328
if not os.getenv('PASS1IMAGESIZE'):
   print("PASS1IMAGESIZE env var non existent;using default:" + str(pass1_image_size)) 
else:
   pass1_image_size = os.getenv('PASS1IMAGESIZE', 1328)
   print("PASS1IMAGESIZE value:" + str(pass1_image_size))


# Determining the size of the passes
autoabc = 1
if not os.getenv('AUTOABC'):
   print("AUTOABC env var non existent;using default:")
   print(autoabc)
   abcdefault = 1
   print("NOTE----> when running docker, set   AUTOABC variable")
   print("   docker run ...  -e AUTOABC=1  #enabled, 0 to disabled (default)")
else:
   autoabc = os.getenv('AUTOABC',1)
   print("AUTOABC value:")
   print(autoabc)
   abcdefault = autoabc


#pass2_image_size = 1024
#if not os.getenv('PASS2IMAGESIZE'):
#   print("PASS2IMAGESIZE env var non existent;using default:" + pass2_image_size)
#else:
#   pass2_image_size = os.getenv('PASS2IMAGESIZE')
#   print("PASS2IMAGESIZE value:" + pass2_image_size)

# pass3_image_size = 2048
# if not os.getenv('PASS3IMAGESIZE'):
#    print("PASS3IMAGESIZE env var non existent;using default:" + pass3_image_size)
# else:
#    pass3_image_size = os.getenv('PASS3IMAGESIZE')
#    print("PASS3IMAGESIZE value:" + pass3_image_size)

##########################################
##   MODELS
#model name for sending it in the response
model1name = "UNNAMED"
if not os.getenv('MODEL1NAME'):
   print("MODEL1NAME env var non existent;using default:" + model1name)
else:
   model1name = os.getenv('MODEL1NAME', "UNNAMED")
   print("MODEL1NAME value:" + model1name)
   
# #m2
# model2name = "UNNAMED"
# if not os.getenv('MODEL2NAME'):   print("MODEL2NAME env var non existent;using default:" + model2name)
# else:
#    model2name = os.getenv('MODEL2NAME')
#    print("MODEL2NAME value:" + model2name)

# #m3
# model3name = "UNNAMED"
# if not os.getenv('MODEL3NAME'):   print("MODEL3NAME env var non existent;using default:" + model3name)
# else:
#    model3name = os.getenv('MODEL3NAME')
#    print("MODEL3NAME value:" + model3name)

#######################################################

def get_model_simplified_name_from_dirname(dirname):
    result_simple_name = dirname.replace("model_","").replace("_864x","").replace("_864","").replace("_new","").replace("-864","")
    print("   result_simple_name:" + result_simple_name)
    return result_simple_name

def get_padded_checkpoint_no_from_filename(checkpoint_filename):
    match = re.search(r'ckpt-(\d+)', checkpoint_filename)
    if match:
      number = int(match.group(1))
    checkpoint_number = round(number/1000,0)
    print(checkpoint_number)

    padded_checkpoint_number = str(str(checkpoint_number).zfill(3))
    return padded_checkpoint_number.replace('.0','')

found_model='none'
found_model_checkpoint='0'

#########################################################
# SETUP


runway_files = runway.file(is_directory=True)
@runway.setup(options={'styleCheckpoint': runway_files})
def setup(opts):
    global found_model,found_model_checkpoint
    sess = tf.Session()
    # sess2 = tf.Session()
    # sess3 = tf.Session()
    init_op = tf.global_variables_initializer()
    # init_op2 = tf.global_variables_initializer()
    # init_op3 = tf.global_variables_initializer()
    sess.run(init_op)
    # sess2.run(init_op2)
    # sess3.run(init_op3)
    with tf.name_scope('placeholder'):
        input_photo = tf.placeholder(dtype=tf.float32,
                                     shape=[1, None, None, 3],
                                     name='photo')
    input_photo_features = encoder(image=input_photo,
                                   options={'gf_dim': 32},
                                   reuse=False)
    output_photo = decoder(features=input_photo_features,
                           options={'gf_dim': 32},
                           reuse=False)
    saver = tf.train.Saver()
    # saver2 = tf.train.Saver()
    # saver3 = tf.train.Saver()
    print("-------------====PATH---------------------->>>>--")
    path_default = '/data/styleCheckpoint'
    print("opts:")
    print(opts)
    print("----------------------------------------")
    if opts is None:
        print("ERROR:opts is None")
        path = path_default
    try:
        path = opts['styleCheckpoint']
    except:
        opts= {'styleCheckpoint': u'/data/styleCheckpoint'}
        path = opts['styleCheckpoint']
    if not os.path.exists(path):
        print("ERROR:Path does not exist:" + path)
        path = path_default
    print(path)
    print("----------------PATH=======---------------<<<<--")
    #Getting the model name
    model_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][0]    
    if not os.getenv('MODELNAME'):
        dtprint("CONFIG::MODELNAME env var non existent;using default:" + model_name)
    else:
        model_name = os.getenv('MODELNAME')
    
    

    # #Getting the model2 name
    # model2_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][1]
    # if not os.getenv('MODEL2NAME'):
    #     dtprint("CONFIG::MODEL2NAME env var non existent;using default:" + model2_name)
    # else:
    #     model2_name = os.getenv('MODEL2NAME')
        

    ##Getting the model3 name
    # model3_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][2]
    # if not os.getenv('MODEL3NAME'):
    #     dtprint("CONFIG::MODEL3NAME env var non existent;using default:" + model3_name)
    # else:
    #     model3_name = os.getenv('MODEL3NAME')
    
    

    checkpoint_dir = os.path.join(path, model_name, 'checkpoint_long')
    #checkpoint2_dir = os.path.join(path, model2_name, 'checkpoint_long')
    # checkpoint3_dir = os.path.join(path, model3_name, 'checkpoint_long')
    print("-----------------------------------------")
    print("modelname is : " + model_name)
    
    found_model=get_model_simplified_name_from_dirname(model_name)
    
    #print("model2name is : " + model2_name)
    # print("model3name is : " + model3_name)
    print("checkpoint_dir is : " + checkpoint_dir)

    

    
    #print("checkpoint2_dir is : " + checkpoint2_dir)
    # print("checkpoint3_dir is : " + checkpoint3_dir)
    print("-----------------------------------------")
    ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
    #ckpt2 = tf.train.get_checkpoint_state(checkpoint2_dir)
    # ckpt3 = tf.train.get_checkpoint_state(checkpoint3_dir)
    ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
    
    found_model_checkpoint= get_padded_checkpoint_no_from_filename(ckpt_name)
    
    #ckpt2_name = os.path.basename(ckpt2.model_checkpoint_path)
    # ckpt3_name = os.path.basename(ckpt3.model_checkpoint_path)
    saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name))
    #saver2.restore(sess2, os.path.join(checkpoint2_dir, ckpt2_name))
    # saver3.restore(sess3, os.path.join(checkpoint3_dir, ckpt3_name))
    m1 = dict(sess=sess, input_photo=input_photo, output_photo=output_photo)
    #m2 = dict(sess=sess2, input_photo=input_photo, output_photo=output_photo)
    # m3 = dict(sess=sess3, input_photo=input_photo, output_photo=output_photo)
    models = type('', (), {})()
    models.m1 = m1
    #models.m2 = m2
    # models.m3 = m3
    return models



def make_target_output_filename(  mname,checkpoint, fn='',res1=0,abc=0, ext='.jpg',svrtype="s1", modelid='', suffix='', xtra_model_id='',verbose=False):
    fn_base=fn.replace(ext,"")
    fn_base=fn_base.replace(".jpg","")
    fn_base=fn_base.replace(".jpeg","")
    fn_base=fn_base.replace(".JPG","")
    fn_base=fn_base.replace(".JPEG","")
    fn_base=fn_base.replace(".png","")
    fn_base=fn_base.replace(".PNG","")
    
    #pad res1 and res2 to 4 digits
    res1_pad=str(res1).zfill(4)
    
    abc_pad=str(abc).zfill(2)
    if res1_pad=="0000":
        res1_pad=""
        
    
    #pad checkpoint to 3 digits
    checkpoint=checkpoint.zfill(3)
    
    if fn_base=="none":
        fn_base=""
    
    if '/' in fn_base:
        fn_base=fn_base.split('/')[-1]
    # Print out all input info:
    if verbose  :
            
        print("-----------------------------")
        print("fn_base: ",fn_base)
        print("mname: ",mname)
        print("suffix: ",suffix)
        print("res1: ",res1_pad)
        print("abc: ",abc_pad)
        print("ext: ",ext)
        print("svrtype: ",svrtype)
        print("modelid: ",modelid)
        print("xtra_model_id: ",xtra_model_id)
        print("checkpoint: ",checkpoint)
        print("fn: ",fn)
    
    mtag = "{}__{}__{}x{}__{}__{}k".format(mname,suffix,res1_pad,abc_pad, svrtype, checkpoint).replace("_0x" + str(abc_pad), "")
    if verbose:
        print(mtag)
    target_output = "{}__{}__{}{}{}".format(fn_base, modelid, mtag, xtra_model_id, ext).replace("_"+str(abc_pad)+"x"+str(abc_pad)+"_","").replace("_0x0_", "").replace("_0_", "").replace("_-", "_").replace("____", "__").replace("___", "__").replace("___", "__").replace("..",".").replace("model_","").replace("_x"+str(abc_pad)+"_","").replace("gia-ds-","")
    target_output = replace_values_from_csv(target_output)

    return target_output

def replace_values_from_csv(target_output):
    # Implement the logic to replace values from CSV
    #load replacer.csv and replace the values (src,dst)
    src_dest_file = 'replacer.csv'
    if os.path.exists(src_dest_file):
        with open(src_dest_file, 'r') as file:
            lines = file.readlines()
            for line in lines:
                src, dst = line.split(',')
                target_output = target_output.replace(src, dst)
    return target_output.replace("\n", "").replace("\r", "").replace(" ", "_")
    

def _make_meta_as_json(x1=0,c1=0,inp=None,result_dict=None):
    global found_model,found_model_checkpoint
    fn='none'
    if inp['fn'] != 'none':
        fn=inp['fn']
    ext='.jpg'
    if inp['ext'] != '.jpg':
        ext=inp['ext']
    
    filename=make_target_output_filename(found_model,found_model_checkpoint,fn,x1,c1,ext,SRV_TYPE)
    
    if result_dict is None:
        json_return = {
            "model": str(found_model),
            "checkpoint": str(found_model_checkpoint),
            "filename": str(filename)
        }
        return json_return
    else: #support adding to the existing dict the data directly
        result_dict['model']=str(found_model)
        result_dict['checkpoint']=str(found_model_checkpoint)
        result_dict['filename']=str(filename)
        return result_dict
    


meta_inputs={'meta':text}
meta_outputs={'model':text,'filename':text,'checkpoint':text}

@runway.command('meta2', inputs=meta_inputs, outputs=meta_outputs)
def get_geta(models, inp):
    global found_model,found_model_checkpoint
    
    json_return = _make_meta_as_json()
        # "files": "nothing yet"
    print(json_return)
    return json_return 



@runway.command('meta', inputs=meta_inputs, outputs=meta_outputs)
def get_geta(models, inp):
    global found_model,found_model_checkpoint
    
    json_return = _make_meta_as_json(inp)
        # "files": "nothing yet"
    print(json_return)
    return json_return 




#@STCGoal add number or text to specify resolution of the three pass
inputs={'contentImage': runway.image,'x1':number(default=1024,min=24,max=18000),'c1':number(default=0,min=-99,max=99),'fn':text(default='none'),'ext':text(default='.jpg')}
outputs={'stylizedImage': runway.image,'totaltime':number,'x1': number,'c1':number,'model1name':text,'checkpoint':text,'filename':text,'model':text}

@runway.command('stylize', inputs=inputs, outputs=outputs)
def stylize(models, inp):
    global found_model,found_model_checkpoint,model1name
    start = time.time()
    
    model = models.m1
    #model2 = models.m2
    # model3 = models.m3
    
    #Getting our names back (even though I think we dont need)
    #@STCIssue BUGGED
    # m1name=models.m1.name
    # m2name=models.m2.name
    # m3name=models.m3.name

    #get size from inputs rather than env
    x1 = int(inp['x1'])
    
    c1 = int(inp['c1'])

    #
    img = inp['contentImage']
    img = np.array(img)
    img = img / 127.5 - 1.

    #@a Pass 1 RESIZE to 1368px the smaller side
    image_size=pass1_image_size
    image_size=x1
    img_shape = img.shape[:2]
    alpha = float(image_size) / float(min(img_shape))
    #dtprint ("DEBUG::content.imgshape:" +   str(tuple(img_shape)) + ", alpha:" + str(alpha))

    try:
        img = scipy.misc.imresize(img, size=alpha)
    except:
        pass
        

    img = np.expand_dims(img, axis=0)
    #@a INFERENCE PASS 1
    dtprint("INFO:Pass1 inference starting")
    img = model['sess'].run(model['output_photo'], feed_dict={model['input_photo']: img})
    
    #
    img = (img + 1.) * 127.5
    img = img.astype('uint8')
    img = img[0]
    #dtprint("INFO:Upresing Pass1 for Pass 2 (STARTING) ")

    #@a Pass 2 RESIZE to 1024px the smaller side
    #image_size=pass2_image_size
    #image_size=x2
    #img_shape = img.shape[:2]
    
    
    #alpha = float(image_size) / float(min(img_shape))
    #dtprint ("DEBUG::pass1.imgshape:" +   str(tuple(img_shape)) + ", alpha:" + str(alpha))

    #img = scipy.misc.imresize(img, size=alpha)
    #dtprint("INFO:Upresing Pass1 (DONE) ")

    #Iteration 2    
    #img = np.array(img)
    #img = img / 127.5 - 1.
    #img = np.expand_dims(img, axis=0)
    #@a INFERENCE PASS 2 using the same model
    #dtprint("INFO:Pass2 inference (STARTING)")
    #img = model['sess'].run(model['output_photo'], feed_dict={model['input_photo']: img})
    #dtprint("INFO:Pass2 inference (DONE)")
    #img = (img + 1.) * 127.5
    #img = img.astype('uint8')
    #img = img[0]



    # #pass3

    # #@a Pass 3 RESIZE to 2048px the smaller side
    # image_size=pass3_image_size
    # image_size=x3
    # img_shape = img.shape[:2]
    
    
    # alpha = float(image_size) / float(min(img_shape))
    # dtprint ("DEBUG::pass2.imgshape:" +   str(tuple(img_shape)) + ", alpha:" + str(alpha))

    # img = scipy.misc.imresize(img, size=alpha)
    # dtprint("INFO:Upresing Pass2 (DONE) ")

    # #Iteration 3
    # img = np.array(img)
    # img = img / 127.5 - 1.
    # img = np.expand_dims(img, axis=0)
    # #@a INFERENCE PASS 3
    # dtprint("INFO:Pass3 inference (STARTING)")
    # img = model3['sess'].run(model3['output_photo'], feed_dict={model3['input_photo']: img})
    # dtprint("INFO:Pass3 inference (DONE)")
    # img = (img + 1.) * 127.5
    # img = img.astype('uint8')
    # img = img[0]
    # #pass3

    #dtprint("INFO:Composing done")

    if c1 != 0 :
        print('Auto Brightening images...' + str(c1))
        img = img, alpha2, beta = automatic_brightness_and_contrast(img,c1)

    stop = time.time()
    totaltime = stop - start
    print("The time of the run:", totaltime)
    
    #if model1name UNNAMED, use found_model
    if model1name == "UNNAMED":
        model1name=found_model
    
    include_meta_directly_in_result=True
    
    
    if include_meta_directly_in_result:
        result_dict = dict(stylizedImage=img,totaltime=totaltime,x1=x1,model1name=model1name,c1=c1)
        result_dict = _make_meta_as_json(x1,c1,inp,result_dict)
    else:
        meta_data = _make_meta_as_json(x1,c1,inp)
        result_dict = dict(stylizedImage=img,totaltime=totaltime,x1=x1,model1name=model1name,c1=c1,meta=meta_data)
        
    return result_dict



def dtprint(msg):
    dttag=getdttag()
    print(dttag + "::" + msg  )

def getdttag():
    # datetime object containing current date and time
    now = datetime.now()    

    # dd/mm/YY H:M:S
    # dt_string = now.strftime("%d/%m/%Y %H:%M:%S")
    return now.strftime("%H:%M:%S")



# Automatic brightness and contrast optimization with optional histogram clipping
def automatic_brightness_and_contrast(image, clip_hist_percent=25):
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    # Calculate grayscale histogram
    hist = cv2.calcHist([gray],[0],None,[256],[0,256])
    hist_size = len(hist)

    # Calculate cumulative distribution from the histogram
    accumulator = []
    accumulator.append(float(hist[0]))
    for index in range(1, hist_size):
        accumulator.append(accumulator[index -1] + float(hist[index]))

    # Locate points to clip
    maximum = accumulator[-1]
    clip_hist_percent *= (maximum/100.0)
    clip_hist_percent /= 2.0

    # Locate left cut
    minimum_gray = 0
    while accumulator[minimum_gray] < clip_hist_percent:
        minimum_gray += 1

    # Locate right cut
    maximum_gray = hist_size -1
    while accumulator[maximum_gray] >= (maximum - clip_hist_percent):
        maximum_gray -= 1

    # Calculate alpha and beta values
    alpha = 255 / (maximum_gray - minimum_gray)
    beta = -minimum_gray * alpha

    '''
    # Calculate new histogram with desired range and show histogram 
    new_hist = cv2.calcHist([gray],[0],None,[256],[minimum_gray,maximum_gray])
    plt.plot(hist)
    plt.plot(new_hist)
    plt.xlim([0,256])
    plt.show()
    '''

    auto_result = cv2.convertScaleAbs(image, alpha=alpha, beta=beta)
    return (auto_result, alpha, beta)


if __name__ == '__main__':
    #print('External Service port is:' +os.environ.get('SPORT'))    
    os.environ["RW_PORT"] = "7860"
    print("Launched...")
    runway.run()