jgwill commited on
Commit
ae926ac
1 Parent(s): dbf6d01
Dockerfile ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM guillaumeai/ast:ap2404_v1-135ik
2
+
3
+ RUN apt update && apt install -y sudo imagemagick
4
+ # RUN apt upgrade -y
5
+
6
+ RUN pip install -U pip
7
+ # #RUN pip install -U pyyaml
8
+ # RUN pip install -U runway-python
9
+ # #runway --force-reinstall
10
+ # #RUN pip install -U tensorflow
11
+
12
+
13
+ COPY requirements.txt .
14
+ RUN pip install -r requirements.txt
15
+
16
+ COPY server.py .
17
+ COPY compo-singleone-v1-dev-acc.py .
18
+ COPY compo-singleone-v2-dev-acc.py .
19
+
20
+ EXPOSE 7860
21
+
22
+ #compo-singleone-v1-dev-acc.py
23
+
24
+ CMD ["python", "compo-singleone-v2-dev-acc.py"]
compo-singleone-v1-dev-acc.py ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #####################################################
2
+ # AST Composite Server Double Two
3
+ # By Guillaume Descoteaux-Isabelle, 20021
4
+ #
5
+ # This server compose two Adaptive Style Transfer model (output of the first pass serve as input to the second using the same model)
6
+ ########################################################
7
+ #v1-dev
8
+ #Receive the 2 res from arguments in the request...
9
+
10
+
11
+ import os
12
+ import numpy as np
13
+ import tensorflow as tf
14
+ import cv2
15
+ from module import encoder, decoder
16
+ from glob import glob
17
+ import runway
18
+ from runway.data_types import number, text
19
+
20
+
21
+ #from utils import *
22
+ import scipy
23
+ from datetime import datetime
24
+ import time
25
+
26
+
27
+ #/var/lib/ast/model/model_cezanne:/data/styleCheckpoint/model_cezanne
28
+
29
+ # Determining the size of the passes
30
+ pass1_image_size = 1328
31
+ if not os.getenv('PASS1IMAGESIZE'):
32
+ print("PASS1IMAGESIZE env var non existent;using default:" + str(pass1_image_size))
33
+ else:
34
+ pass1_image_size = os.getenv('PASS1IMAGESIZE', 1328)
35
+ print("PASS1IMAGESIZE value:" + str(pass1_image_size))
36
+
37
+
38
+ # Determining the size of the passes
39
+ autoabc = 1
40
+ if not os.getenv('AUTOABC'):
41
+ print("AUTOABC env var non existent;using default:")
42
+ print(autoabc)
43
+ abcdefault = 1
44
+ print("NOTE----> when running docker, set AUTOABC variable")
45
+ print(" docker run ... -e AUTOABC=1 #enabled, 0 to disabled (default)")
46
+ else:
47
+ autoabc = os.getenv('AUTOABC',1)
48
+ print("AUTOABC value:")
49
+ print(autoabc)
50
+ abcdefault = autoabc
51
+
52
+
53
+ #pass2_image_size = 1024
54
+ #if not os.getenv('PASS2IMAGESIZE'):
55
+ # print("PASS2IMAGESIZE env var non existent;using default:" + pass2_image_size)
56
+ #else:
57
+ # pass2_image_size = os.getenv('PASS2IMAGESIZE')
58
+ # print("PASS2IMAGESIZE value:" + pass2_image_size)
59
+
60
+ # pass3_image_size = 2048
61
+ # if not os.getenv('PASS3IMAGESIZE'):
62
+ # print("PASS3IMAGESIZE env var non existent;using default:" + pass3_image_size)
63
+ # else:
64
+ # pass3_image_size = os.getenv('PASS3IMAGESIZE')
65
+ # print("PASS3IMAGESIZE value:" + pass3_image_size)
66
+
67
+ ##########################################
68
+ ## MODELS
69
+ #model name for sending it in the response
70
+ model1name = "UNNAMED"
71
+ if not os.getenv('MODEL1NAME'):
72
+ print("MODEL1NAME env var non existent;using default:" + model1name)
73
+ else:
74
+ model1name = os.getenv('MODEL1NAME', "UNNAMED")
75
+ print("MODEL1NAME value:" + model1name)
76
+
77
+ # #m2
78
+ # model2name = "UNNAMED"
79
+ # if not os.getenv('MODEL2NAME'): print("MODEL2NAME env var non existent;using default:" + model2name)
80
+ # else:
81
+ # model2name = os.getenv('MODEL2NAME')
82
+ # print("MODEL2NAME value:" + model2name)
83
+
84
+ # #m3
85
+ # model3name = "UNNAMED"
86
+ # if not os.getenv('MODEL3NAME'): print("MODEL3NAME env var non existent;using default:" + model3name)
87
+ # else:
88
+ # model3name = os.getenv('MODEL3NAME')
89
+ # print("MODEL3NAME value:" + model3name)
90
+
91
+ #######################################################
92
+
93
+
94
+ #########################################################
95
+ # SETUP
96
+
97
+ @runway.setup(options={'styleCheckpoint': runway.file(is_directory=True)})
98
+ def setup(opts):
99
+ sess = tf.Session()
100
+ # sess2 = tf.Session()
101
+ # sess3 = tf.Session()
102
+ init_op = tf.global_variables_initializer()
103
+ # init_op2 = tf.global_variables_initializer()
104
+ # init_op3 = tf.global_variables_initializer()
105
+ sess.run(init_op)
106
+ # sess2.run(init_op2)
107
+ # sess3.run(init_op3)
108
+ with tf.name_scope('placeholder'):
109
+ input_photo = tf.placeholder(dtype=tf.float32,
110
+ shape=[1, None, None, 3],
111
+ name='photo')
112
+ input_photo_features = encoder(image=input_photo,
113
+ options={'gf_dim': 32},
114
+ reuse=False)
115
+ output_photo = decoder(features=input_photo_features,
116
+ options={'gf_dim': 32},
117
+ reuse=False)
118
+ saver = tf.train.Saver()
119
+ # saver2 = tf.train.Saver()
120
+ # saver3 = tf.train.Saver()
121
+ path = opts['styleCheckpoint']
122
+ #Getting the model name
123
+ model_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][0]
124
+ if not os.getenv('MODELNAME'):
125
+ dtprint("CONFIG::MODELNAME env var non existent;using default:" + model_name)
126
+ else:
127
+ model_name = os.getenv('MODELNAME')
128
+
129
+
130
+
131
+ # #Getting the model2 name
132
+ # model2_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][1]
133
+ # if not os.getenv('MODEL2NAME'):
134
+ # dtprint("CONFIG::MODEL2NAME env var non existent;using default:" + model2_name)
135
+ # else:
136
+ # model2_name = os.getenv('MODEL2NAME')
137
+
138
+
139
+ ##Getting the model3 name
140
+ # model3_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][2]
141
+ # if not os.getenv('MODEL3NAME'):
142
+ # dtprint("CONFIG::MODEL3NAME env var non existent;using default:" + model3_name)
143
+ # else:
144
+ # model3_name = os.getenv('MODEL3NAME')
145
+
146
+
147
+
148
+ checkpoint_dir = os.path.join(path, model_name, 'checkpoint_long')
149
+ #checkpoint2_dir = os.path.join(path, model2_name, 'checkpoint_long')
150
+ # checkpoint3_dir = os.path.join(path, model3_name, 'checkpoint_long')
151
+ print("-----------------------------------------")
152
+ print("modelname is : " + model_name)
153
+ #print("model2name is : " + model2_name)
154
+ # print("model3name is : " + model3_name)
155
+ print("checkpoint_dir is : " + checkpoint_dir)
156
+
157
+ print("Auto Brightness-Contrast Correction can be set as the x2 of this SingleOne Server")
158
+
159
+
160
+ #print("checkpoint2_dir is : " + checkpoint2_dir)
161
+ # print("checkpoint3_dir is : " + checkpoint3_dir)
162
+ print("-----------------------------------------")
163
+ ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
164
+ #ckpt2 = tf.train.get_checkpoint_state(checkpoint2_dir)
165
+ # ckpt3 = tf.train.get_checkpoint_state(checkpoint3_dir)
166
+ ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
167
+ #ckpt2_name = os.path.basename(ckpt2.model_checkpoint_path)
168
+ # ckpt3_name = os.path.basename(ckpt3.model_checkpoint_path)
169
+ saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name))
170
+ #saver2.restore(sess2, os.path.join(checkpoint2_dir, ckpt2_name))
171
+ # saver3.restore(sess3, os.path.join(checkpoint3_dir, ckpt3_name))
172
+ m1 = dict(sess=sess, input_photo=input_photo, output_photo=output_photo)
173
+ #m2 = dict(sess=sess2, input_photo=input_photo, output_photo=output_photo)
174
+ # m3 = dict(sess=sess3, input_photo=input_photo, output_photo=output_photo)
175
+ models = type('', (), {})()
176
+ models.m1 = m1
177
+ #models.m2 = m2
178
+ # models.m3 = m3
179
+ return models
180
+
181
+
182
+ #@STCGoal add number or text to specify resolution of the three pass
183
+ inputs={'contentImage': runway.image,'x1':number(default=1024,min=24,max=17000),'x2':number(default=0,min=-99,max=99)}
184
+ outputs={'stylizedImage': runway.image,'totaltime':number,'x1': number,'c1':number,'model1name':text}
185
+
186
+ @runway.command('stylize', inputs=inputs, outputs=outputs)
187
+ def stylize(models, inp):
188
+ start = time.time()
189
+ dtprint("Composing.1..")
190
+ model = models.m1
191
+ #model2 = models.m2
192
+ # model3 = models.m3
193
+
194
+ #Getting our names back (even though I think we dont need)
195
+ #@STCIssue BUGGED
196
+ # m1name=models.m1.name
197
+ # m2name=models.m2.name
198
+ # m3name=models.m3.name
199
+
200
+ #get size from inputs rather than env
201
+ x1 = inp['x1']
202
+ c1 = inp['x2']
203
+ # x3 = inp['x3']
204
+ if c1 > 99:
205
+ ci = abcdefault
206
+
207
+
208
+ #
209
+ img = inp['contentImage']
210
+ img = np.array(img)
211
+ img = img / 127.5 - 1.
212
+
213
+ #@a Pass 1 RESIZE to 1368px the smaller side
214
+ image_size=pass1_image_size
215
+ image_size=x1
216
+ img_shape = img.shape[:2]
217
+ alpha = float(image_size) / float(min(img_shape))
218
+ dtprint ("DEBUG::content.imgshape:" + str(tuple(img_shape)) + ", alpha:" + str(alpha))
219
+
220
+ try:
221
+ img = scipy.misc.imresize(img, size=alpha)
222
+ except:
223
+ pass
224
+
225
+
226
+ img = np.expand_dims(img, axis=0)
227
+ #@a INFERENCE PASS 1
228
+ dtprint("INFO:Pass1 inference starting")
229
+ img = model['sess'].run(model['output_photo'], feed_dict={model['input_photo']: img})
230
+ dtprint("INFO:Pass1 inference done")
231
+ #
232
+ img = (img + 1.) * 127.5
233
+ img = img.astype('uint8')
234
+ img = img[0]
235
+ #dtprint("INFO:Upresing Pass1 for Pass 2 (STARTING) ")
236
+
237
+ #@a Pass 2 RESIZE to 1024px the smaller side
238
+ #image_size=pass2_image_size
239
+ #image_size=x2
240
+ #img_shape = img.shape[:2]
241
+
242
+
243
+ #alpha = float(image_size) / float(min(img_shape))
244
+ #dtprint ("DEBUG::pass1.imgshape:" + str(tuple(img_shape)) + ", alpha:" + str(alpha))
245
+
246
+ #img = scipy.misc.imresize(img, size=alpha)
247
+ #dtprint("INFO:Upresing Pass1 (DONE) ")
248
+
249
+ #Iteration 2
250
+ #img = np.array(img)
251
+ #img = img / 127.5 - 1.
252
+ #img = np.expand_dims(img, axis=0)
253
+ #@a INFERENCE PASS 2 using the same model
254
+ #dtprint("INFO:Pass2 inference (STARTING)")
255
+ #img = model['sess'].run(model['output_photo'], feed_dict={model['input_photo']: img})
256
+ #dtprint("INFO:Pass2 inference (DONE)")
257
+ #img = (img + 1.) * 127.5
258
+ #img = img.astype('uint8')
259
+ #img = img[0]
260
+
261
+
262
+
263
+ # #pass3
264
+
265
+ # #@a Pass 3 RESIZE to 2048px the smaller side
266
+ # image_size=pass3_image_size
267
+ # image_size=x3
268
+ # img_shape = img.shape[:2]
269
+
270
+
271
+ # alpha = float(image_size) / float(min(img_shape))
272
+ # dtprint ("DEBUG::pass2.imgshape:" + str(tuple(img_shape)) + ", alpha:" + str(alpha))
273
+
274
+ # img = scipy.misc.imresize(img, size=alpha)
275
+ # dtprint("INFO:Upresing Pass2 (DONE) ")
276
+
277
+ # #Iteration 3
278
+ # img = np.array(img)
279
+ # img = img / 127.5 - 1.
280
+ # img = np.expand_dims(img, axis=0)
281
+ # #@a INFERENCE PASS 3
282
+ # dtprint("INFO:Pass3 inference (STARTING)")
283
+ # img = model3['sess'].run(model3['output_photo'], feed_dict={model3['input_photo']: img})
284
+ # dtprint("INFO:Pass3 inference (DONE)")
285
+ # img = (img + 1.) * 127.5
286
+ # img = img.astype('uint8')
287
+ # img = img[0]
288
+ # #pass3
289
+
290
+ #dtprint("INFO:Composing done")
291
+ print('autoabc value:')
292
+ print(c1)
293
+ if c1 != 0 :
294
+ print('Auto Brightening images...')
295
+ img = img, alpha2, beta = automatic_brightness_and_contrast(img,c1)
296
+
297
+ stop = time.time()
298
+ totaltime = stop - start
299
+ print("The time of the run:", totaltime)
300
+ res2 = dict(stylizedImage=img,totaltime=totaltime,x1=x1,model1name=model1name,c1=c1)
301
+ return res2
302
+
303
+
304
+
305
+ def dtprint(msg):
306
+ dttag=getdttag()
307
+ print(dttag + "::" + msg )
308
+
309
+ def getdttag():
310
+ # datetime object containing current date and time
311
+ now = datetime.now()
312
+
313
+ # dd/mm/YY H:M:S
314
+ # dt_string = now.strftime("%d/%m/%Y %H:%M:%S")
315
+ return now.strftime("%H:%M:%S")
316
+
317
+
318
+
319
+ # Automatic brightness and contrast optimization with optional histogram clipping
320
+ def automatic_brightness_and_contrast(image, clip_hist_percent=25):
321
+ gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
322
+
323
+ # Calculate grayscale histogram
324
+ hist = cv2.calcHist([gray],[0],None,[256],[0,256])
325
+ hist_size = len(hist)
326
+
327
+ # Calculate cumulative distribution from the histogram
328
+ accumulator = []
329
+ accumulator.append(float(hist[0]))
330
+ for index in range(1, hist_size):
331
+ accumulator.append(accumulator[index -1] + float(hist[index]))
332
+
333
+ # Locate points to clip
334
+ maximum = accumulator[-1]
335
+ clip_hist_percent *= (maximum/100.0)
336
+ clip_hist_percent /= 2.0
337
+
338
+ # Locate left cut
339
+ minimum_gray = 0
340
+ while accumulator[minimum_gray] < clip_hist_percent:
341
+ minimum_gray += 1
342
+
343
+ # Locate right cut
344
+ maximum_gray = hist_size -1
345
+ while accumulator[maximum_gray] >= (maximum - clip_hist_percent):
346
+ maximum_gray -= 1
347
+
348
+ # Calculate alpha and beta values
349
+ alpha = 255 / (maximum_gray - minimum_gray)
350
+ beta = -minimum_gray * alpha
351
+
352
+ '''
353
+ # Calculate new histogram with desired range and show histogram
354
+ new_hist = cv2.calcHist([gray],[0],None,[256],[minimum_gray,maximum_gray])
355
+ plt.plot(hist)
356
+ plt.plot(new_hist)
357
+ plt.xlim([0,256])
358
+ plt.show()
359
+ '''
360
+
361
+ auto_result = cv2.convertScaleAbs(image, alpha=alpha, beta=beta)
362
+ return (auto_result, alpha, beta)
363
+
364
+
365
+ if __name__ == '__main__':
366
+ #print('External Service port is:' +os.environ.get('SPORT'))
367
+ os.environ["RW_PORT"] = "7860"
368
+ runway.run()
compo-singleone-v2-dev-acc.py ADDED
@@ -0,0 +1,553 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #####################################################
2
+ # AST Composite Server Double Two
3
+ # By Guillaume Descoteaux-Isabelle, 20021
4
+ #
5
+ # This server compose two Adaptive Style Transfer model (output of the first pass serve as input to the second using the same model)
6
+ ########################################################
7
+ #v1-dev
8
+ #Receive the 2 res from arguments in the request...
9
+
10
+
11
+ import os
12
+ import numpy as np
13
+ import tensorflow as tf
14
+ import cv2
15
+ from module import encoder, decoder
16
+ from glob import glob
17
+ import runway
18
+ from runway.data_types import number, text
19
+
20
+
21
+ #from utils import *
22
+ import scipy
23
+ from datetime import datetime
24
+ import time
25
+
26
+
27
+ import re
28
+
29
+
30
+ SRV_TYPE="s1"
31
+
32
+ #set env var RW_ if not already set
33
+ if not os.getenv('RW_PORT'):
34
+ os.environ["RW_PORT"] = "7860"
35
+
36
+ if not os.getenv('RW_DEBUG'):
37
+ os.environ["RW_DEBUG"] = "0"
38
+ if not os.getenv('RW_HOST'):
39
+ os.environ["RW_HOST"] = "0.0.0.0"
40
+ #RW_MODEL_OPTIONS
41
+ if not os.getenv('RW_MODEL_OPTIONS'):
42
+ os.environ["RW_MODEL_OPTIONS"]='{"styleCheckpoint":"/data/styleCheckpoint"}'
43
+
44
+ # Determining the size of the passes
45
+ pass1_image_size = 1328
46
+ if not os.getenv('PASS1IMAGESIZE'):
47
+ print("PASS1IMAGESIZE env var non existent;using default:" + str(pass1_image_size))
48
+ else:
49
+ pass1_image_size = os.getenv('PASS1IMAGESIZE', 1328)
50
+ print("PASS1IMAGESIZE value:" + str(pass1_image_size))
51
+
52
+
53
+ # Determining the size of the passes
54
+ autoabc = 1
55
+ if not os.getenv('AUTOABC'):
56
+ print("AUTOABC env var non existent;using default:")
57
+ print(autoabc)
58
+ abcdefault = 1
59
+ print("NOTE----> when running docker, set AUTOABC variable")
60
+ print(" docker run ... -e AUTOABC=1 #enabled, 0 to disabled (default)")
61
+ else:
62
+ autoabc = os.getenv('AUTOABC',1)
63
+ print("AUTOABC value:")
64
+ print(autoabc)
65
+ abcdefault = autoabc
66
+
67
+
68
+ #pass2_image_size = 1024
69
+ #if not os.getenv('PASS2IMAGESIZE'):
70
+ # print("PASS2IMAGESIZE env var non existent;using default:" + pass2_image_size)
71
+ #else:
72
+ # pass2_image_size = os.getenv('PASS2IMAGESIZE')
73
+ # print("PASS2IMAGESIZE value:" + pass2_image_size)
74
+
75
+ # pass3_image_size = 2048
76
+ # if not os.getenv('PASS3IMAGESIZE'):
77
+ # print("PASS3IMAGESIZE env var non existent;using default:" + pass3_image_size)
78
+ # else:
79
+ # pass3_image_size = os.getenv('PASS3IMAGESIZE')
80
+ # print("PASS3IMAGESIZE value:" + pass3_image_size)
81
+
82
+ ##########################################
83
+ ## MODELS
84
+ #model name for sending it in the response
85
+ model1name = "UNNAMED"
86
+ if not os.getenv('MODEL1NAME'):
87
+ print("MODEL1NAME env var non existent;using default:" + model1name)
88
+ else:
89
+ model1name = os.getenv('MODEL1NAME', "UNNAMED")
90
+ print("MODEL1NAME value:" + model1name)
91
+
92
+ # #m2
93
+ # model2name = "UNNAMED"
94
+ # if not os.getenv('MODEL2NAME'): print("MODEL2NAME env var non existent;using default:" + model2name)
95
+ # else:
96
+ # model2name = os.getenv('MODEL2NAME')
97
+ # print("MODEL2NAME value:" + model2name)
98
+
99
+ # #m3
100
+ # model3name = "UNNAMED"
101
+ # if not os.getenv('MODEL3NAME'): print("MODEL3NAME env var non existent;using default:" + model3name)
102
+ # else:
103
+ # model3name = os.getenv('MODEL3NAME')
104
+ # print("MODEL3NAME value:" + model3name)
105
+
106
+ #######################################################
107
+
108
+ def get_model_simplified_name_from_dirname(dirname):
109
+ result_simple_name = dirname.replace("model_","").replace("_864x","").replace("_864","").replace("_new","").replace("-864","")
110
+ print(" result_simple_name:" + result_simple_name)
111
+ return result_simple_name
112
+
113
+ def get_padded_checkpoint_no_from_filename(checkpoint_filename):
114
+ match = re.search(r'ckpt-(\d+)', checkpoint_filename)
115
+ if match:
116
+ number = int(match.group(1))
117
+ checkpoint_number = round(number/1000,0)
118
+ print(checkpoint_number)
119
+
120
+ padded_checkpoint_number = str(str(checkpoint_number).zfill(3))
121
+ return padded_checkpoint_number.replace('.0','')
122
+
123
+ found_model='none'
124
+ found_model_checkpoint='0'
125
+
126
+ #########################################################
127
+ # SETUP
128
+
129
+
130
+ runway_files = runway.file(is_directory=True)
131
+ @runway.setup(options={'styleCheckpoint': runway_files})
132
+ def setup(opts):
133
+ global found_model,found_model_checkpoint
134
+ sess = tf.Session()
135
+ # sess2 = tf.Session()
136
+ # sess3 = tf.Session()
137
+ init_op = tf.global_variables_initializer()
138
+ # init_op2 = tf.global_variables_initializer()
139
+ # init_op3 = tf.global_variables_initializer()
140
+ sess.run(init_op)
141
+ # sess2.run(init_op2)
142
+ # sess3.run(init_op3)
143
+ with tf.name_scope('placeholder'):
144
+ input_photo = tf.placeholder(dtype=tf.float32,
145
+ shape=[1, None, None, 3],
146
+ name='photo')
147
+ input_photo_features = encoder(image=input_photo,
148
+ options={'gf_dim': 32},
149
+ reuse=False)
150
+ output_photo = decoder(features=input_photo_features,
151
+ options={'gf_dim': 32},
152
+ reuse=False)
153
+ saver = tf.train.Saver()
154
+ # saver2 = tf.train.Saver()
155
+ # saver3 = tf.train.Saver()
156
+ print("-------------====PATH---------------------->>>>--")
157
+ path_default = '/data/styleCheckpoint'
158
+ print("opts:")
159
+ print(opts)
160
+ print("----------------------------------------")
161
+ if opts is None:
162
+ print("ERROR:opts is None")
163
+ path = path_default
164
+ try:
165
+ path = opts['styleCheckpoint']
166
+ except:
167
+ opts= {'styleCheckpoint': u'/data/styleCheckpoint'}
168
+ path = opts['styleCheckpoint']
169
+ if not os.path.exists(path):
170
+ print("ERROR:Path does not exist:" + path)
171
+ path = path_default
172
+ print(path)
173
+ print("----------------PATH=======---------------<<<<--")
174
+ #Getting the model name
175
+ model_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][0]
176
+ if not os.getenv('MODELNAME'):
177
+ dtprint("CONFIG::MODELNAME env var non existent;using default:" + model_name)
178
+ else:
179
+ model_name = os.getenv('MODELNAME')
180
+
181
+
182
+
183
+ # #Getting the model2 name
184
+ # model2_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][1]
185
+ # if not os.getenv('MODEL2NAME'):
186
+ # dtprint("CONFIG::MODEL2NAME env var non existent;using default:" + model2_name)
187
+ # else:
188
+ # model2_name = os.getenv('MODEL2NAME')
189
+
190
+
191
+ ##Getting the model3 name
192
+ # model3_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][2]
193
+ # if not os.getenv('MODEL3NAME'):
194
+ # dtprint("CONFIG::MODEL3NAME env var non existent;using default:" + model3_name)
195
+ # else:
196
+ # model3_name = os.getenv('MODEL3NAME')
197
+
198
+
199
+
200
+ checkpoint_dir = os.path.join(path, model_name, 'checkpoint_long')
201
+ #checkpoint2_dir = os.path.join(path, model2_name, 'checkpoint_long')
202
+ # checkpoint3_dir = os.path.join(path, model3_name, 'checkpoint_long')
203
+ print("-----------------------------------------")
204
+ print("modelname is : " + model_name)
205
+
206
+ found_model=get_model_simplified_name_from_dirname(model_name)
207
+
208
+ #print("model2name is : " + model2_name)
209
+ # print("model3name is : " + model3_name)
210
+ print("checkpoint_dir is : " + checkpoint_dir)
211
+
212
+
213
+
214
+
215
+ #print("checkpoint2_dir is : " + checkpoint2_dir)
216
+ # print("checkpoint3_dir is : " + checkpoint3_dir)
217
+ print("-----------------------------------------")
218
+ ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
219
+ #ckpt2 = tf.train.get_checkpoint_state(checkpoint2_dir)
220
+ # ckpt3 = tf.train.get_checkpoint_state(checkpoint3_dir)
221
+ ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
222
+
223
+ found_model_checkpoint= get_padded_checkpoint_no_from_filename(ckpt_name)
224
+
225
+ #ckpt2_name = os.path.basename(ckpt2.model_checkpoint_path)
226
+ # ckpt3_name = os.path.basename(ckpt3.model_checkpoint_path)
227
+ saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name))
228
+ #saver2.restore(sess2, os.path.join(checkpoint2_dir, ckpt2_name))
229
+ # saver3.restore(sess3, os.path.join(checkpoint3_dir, ckpt3_name))
230
+ m1 = dict(sess=sess, input_photo=input_photo, output_photo=output_photo)
231
+ #m2 = dict(sess=sess2, input_photo=input_photo, output_photo=output_photo)
232
+ # m3 = dict(sess=sess3, input_photo=input_photo, output_photo=output_photo)
233
+ models = type('', (), {})()
234
+ models.m1 = m1
235
+ #models.m2 = m2
236
+ # models.m3 = m3
237
+ return models
238
+
239
+
240
+
241
+ def make_target_output_filename( mname,checkpoint, fn='',res1=0,abc=0, ext='.jpg',svrtype="s1", modelid='', suffix='', xtra_model_id='',verbose=False):
242
+ fn_base=fn.replace(ext,"")
243
+ fn_base=fn_base.replace(".jpg","")
244
+ fn_base=fn_base.replace(".jpeg","")
245
+ fn_base=fn_base.replace(".JPG","")
246
+ fn_base=fn_base.replace(".JPEG","")
247
+ fn_base=fn_base.replace(".png","")
248
+ fn_base=fn_base.replace(".PNG","")
249
+
250
+ #pad res1 and res2 to 4 digits
251
+ res1_pad=str(res1).zfill(4)
252
+
253
+ abc_pad=str(abc).zfill(2)
254
+ if res1_pad=="0000":
255
+ res1_pad=""
256
+
257
+
258
+ #pad checkpoint to 3 digits
259
+ checkpoint=checkpoint.zfill(3)
260
+
261
+ if fn_base=="none":
262
+ fn_base=""
263
+
264
+ if '/' in fn_base:
265
+ fn_base=fn_base.split('/')[-1]
266
+ # Print out all input info:
267
+ if verbose :
268
+
269
+ print("-----------------------------")
270
+ print("fn_base: ",fn_base)
271
+ print("mname: ",mname)
272
+ print("suffix: ",suffix)
273
+ print("res1: ",res1_pad)
274
+ print("abc: ",abc_pad)
275
+ print("ext: ",ext)
276
+ print("svrtype: ",svrtype)
277
+ print("modelid: ",modelid)
278
+ print("xtra_model_id: ",xtra_model_id)
279
+ print("checkpoint: ",checkpoint)
280
+ print("fn: ",fn)
281
+
282
+ mtag = "{}__{}__{}x{}__{}__{}k".format(mname,suffix,res1_pad,abc_pad, svrtype, checkpoint).replace("_0x" + str(abc_pad), "")
283
+ if verbose:
284
+ print(mtag)
285
+ target_output = "{}__{}__{}{}{}".format(fn_base, modelid, mtag, xtra_model_id, ext).replace("_"+str(abc_pad)+"x"+str(abc_pad)+"_","").replace("_0x0_", "").replace("_0_", "").replace("_-", "_").replace("____", "__").replace("___", "__").replace("___", "__").replace("..",".").replace("model_","").replace("_x"+str(abc_pad)+"_","").replace("gia-ds-","")
286
+ target_output = replace_values_from_csv(target_output)
287
+
288
+ return target_output
289
+
290
+ def replace_values_from_csv(target_output):
291
+ # Implement the logic to replace values from CSV
292
+ #load replacer.csv and replace the values (src,dst)
293
+ src_dest_file = 'replacer.csv'
294
+ if os.path.exists(src_dest_file):
295
+ with open(src_dest_file, 'r') as file:
296
+ lines = file.readlines()
297
+ for line in lines:
298
+ src, dst = line.split(',')
299
+ target_output = target_output.replace(src, dst)
300
+ return target_output.replace("\n", "").replace("\r", "").replace(" ", "_")
301
+
302
+
303
+ def _make_meta_as_json(x1=0,c1=0,inp=None,result_dict=None):
304
+ global found_model,found_model_checkpoint
305
+ fn='none'
306
+ if inp['fn'] != 'none':
307
+ fn=inp['fn']
308
+ ext='.jpg'
309
+ if inp['ext'] != '.jpg':
310
+ ext=inp['ext']
311
+
312
+ filename=make_target_output_filename(found_model,found_model_checkpoint,fn,x1,c1,ext,SRV_TYPE)
313
+
314
+ if result_dict is None:
315
+ json_return = {
316
+ "model": str(found_model),
317
+ "checkpoint": str(found_model_checkpoint),
318
+ "filename": str(filename)
319
+ }
320
+ return json_return
321
+ else: #support adding to the existing dict the data directly
322
+ result_dict['model']=str(found_model)
323
+ result_dict['checkpoint']=str(found_model_checkpoint)
324
+ result_dict['filename']=str(filename)
325
+ return result_dict
326
+
327
+
328
+
329
+ meta_inputs={'meta':text}
330
+ meta_outputs={'model':text,'filename':text,'checkpoint':text}
331
+
332
+ @runway.command('meta2', inputs=meta_inputs, outputs=meta_outputs)
333
+ def get_geta(models, inp):
334
+ global found_model,found_model_checkpoint
335
+
336
+ json_return = _make_meta_as_json()
337
+ # "files": "nothing yet"
338
+ print(json_return)
339
+ return json_return
340
+
341
+
342
+
343
+ @runway.command('meta', inputs=meta_inputs, outputs=meta_outputs)
344
+ def get_geta(models, inp):
345
+ global found_model,found_model_checkpoint
346
+
347
+ json_return = _make_meta_as_json(inp)
348
+ # "files": "nothing yet"
349
+ print(json_return)
350
+ return json_return
351
+
352
+
353
+
354
+
355
+ #@STCGoal add number or text to specify resolution of the three pass
356
+ inputs={'contentImage': runway.image,'x1':number(default=1024,min=24,max=18000),'c1':number(default=0,min=-99,max=99),'fn':text(default='none'),'ext':text(default='.jpg')}
357
+ outputs={'stylizedImage': runway.image,'totaltime':number,'x1': number,'c1':number,'model1name':text,'checkpoint':text,'filename':text,'model':text}
358
+
359
+ @runway.command('stylize', inputs=inputs, outputs=outputs)
360
+ def stylize(models, inp):
361
+ global found_model,found_model_checkpoint,model1name
362
+ start = time.time()
363
+
364
+ model = models.m1
365
+ #model2 = models.m2
366
+ # model3 = models.m3
367
+
368
+ #Getting our names back (even though I think we dont need)
369
+ #@STCIssue BUGGED
370
+ # m1name=models.m1.name
371
+ # m2name=models.m2.name
372
+ # m3name=models.m3.name
373
+
374
+ #get size from inputs rather than env
375
+ x1 = int(inp['x1'])
376
+
377
+ c1 = int(inp['c1'])
378
+
379
+ #
380
+ img = inp['contentImage']
381
+ img = np.array(img)
382
+ img = img / 127.5 - 1.
383
+
384
+ #@a Pass 1 RESIZE to 1368px the smaller side
385
+ image_size=pass1_image_size
386
+ image_size=x1
387
+ img_shape = img.shape[:2]
388
+ alpha = float(image_size) / float(min(img_shape))
389
+ #dtprint ("DEBUG::content.imgshape:" + str(tuple(img_shape)) + ", alpha:" + str(alpha))
390
+
391
+ try:
392
+ img = scipy.misc.imresize(img, size=alpha)
393
+ except:
394
+ pass
395
+
396
+
397
+ img = np.expand_dims(img, axis=0)
398
+ #@a INFERENCE PASS 1
399
+ dtprint("INFO:Pass1 inference starting")
400
+ img = model['sess'].run(model['output_photo'], feed_dict={model['input_photo']: img})
401
+
402
+ #
403
+ img = (img + 1.) * 127.5
404
+ img = img.astype('uint8')
405
+ img = img[0]
406
+ #dtprint("INFO:Upresing Pass1 for Pass 2 (STARTING) ")
407
+
408
+ #@a Pass 2 RESIZE to 1024px the smaller side
409
+ #image_size=pass2_image_size
410
+ #image_size=x2
411
+ #img_shape = img.shape[:2]
412
+
413
+
414
+ #alpha = float(image_size) / float(min(img_shape))
415
+ #dtprint ("DEBUG::pass1.imgshape:" + str(tuple(img_shape)) + ", alpha:" + str(alpha))
416
+
417
+ #img = scipy.misc.imresize(img, size=alpha)
418
+ #dtprint("INFO:Upresing Pass1 (DONE) ")
419
+
420
+ #Iteration 2
421
+ #img = np.array(img)
422
+ #img = img / 127.5 - 1.
423
+ #img = np.expand_dims(img, axis=0)
424
+ #@a INFERENCE PASS 2 using the same model
425
+ #dtprint("INFO:Pass2 inference (STARTING)")
426
+ #img = model['sess'].run(model['output_photo'], feed_dict={model['input_photo']: img})
427
+ #dtprint("INFO:Pass2 inference (DONE)")
428
+ #img = (img + 1.) * 127.5
429
+ #img = img.astype('uint8')
430
+ #img = img[0]
431
+
432
+
433
+
434
+ # #pass3
435
+
436
+ # #@a Pass 3 RESIZE to 2048px the smaller side
437
+ # image_size=pass3_image_size
438
+ # image_size=x3
439
+ # img_shape = img.shape[:2]
440
+
441
+
442
+ # alpha = float(image_size) / float(min(img_shape))
443
+ # dtprint ("DEBUG::pass2.imgshape:" + str(tuple(img_shape)) + ", alpha:" + str(alpha))
444
+
445
+ # img = scipy.misc.imresize(img, size=alpha)
446
+ # dtprint("INFO:Upresing Pass2 (DONE) ")
447
+
448
+ # #Iteration 3
449
+ # img = np.array(img)
450
+ # img = img / 127.5 - 1.
451
+ # img = np.expand_dims(img, axis=0)
452
+ # #@a INFERENCE PASS 3
453
+ # dtprint("INFO:Pass3 inference (STARTING)")
454
+ # img = model3['sess'].run(model3['output_photo'], feed_dict={model3['input_photo']: img})
455
+ # dtprint("INFO:Pass3 inference (DONE)")
456
+ # img = (img + 1.) * 127.5
457
+ # img = img.astype('uint8')
458
+ # img = img[0]
459
+ # #pass3
460
+
461
+ #dtprint("INFO:Composing done")
462
+
463
+ if c1 != 0 :
464
+ print('Auto Brightening images...' + str(c1))
465
+ img = img, alpha2, beta = automatic_brightness_and_contrast(img,c1)
466
+
467
+ stop = time.time()
468
+ totaltime = stop - start
469
+ print("The time of the run:", totaltime)
470
+
471
+ #if model1name UNNAMED, use found_model
472
+ if model1name == "UNNAMED":
473
+ model1name=found_model
474
+
475
+ include_meta_directly_in_result=True
476
+
477
+
478
+ if include_meta_directly_in_result:
479
+ result_dict = dict(stylizedImage=img,totaltime=totaltime,x1=x1,model1name=model1name,c1=c1)
480
+ result_dict = _make_meta_as_json(x1,c1,inp,result_dict)
481
+ else:
482
+ meta_data = _make_meta_as_json(x1,c1,inp)
483
+ result_dict = dict(stylizedImage=img,totaltime=totaltime,x1=x1,model1name=model1name,c1=c1,meta=meta_data)
484
+
485
+ return result_dict
486
+
487
+
488
+
489
+ def dtprint(msg):
490
+ dttag=getdttag()
491
+ print(dttag + "::" + msg )
492
+
493
+ def getdttag():
494
+ # datetime object containing current date and time
495
+ now = datetime.now()
496
+
497
+ # dd/mm/YY H:M:S
498
+ # dt_string = now.strftime("%d/%m/%Y %H:%M:%S")
499
+ return now.strftime("%H:%M:%S")
500
+
501
+
502
+
503
+ # Automatic brightness and contrast optimization with optional histogram clipping
504
+ def automatic_brightness_and_contrast(image, clip_hist_percent=25):
505
+ gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
506
+
507
+ # Calculate grayscale histogram
508
+ hist = cv2.calcHist([gray],[0],None,[256],[0,256])
509
+ hist_size = len(hist)
510
+
511
+ # Calculate cumulative distribution from the histogram
512
+ accumulator = []
513
+ accumulator.append(float(hist[0]))
514
+ for index in range(1, hist_size):
515
+ accumulator.append(accumulator[index -1] + float(hist[index]))
516
+
517
+ # Locate points to clip
518
+ maximum = accumulator[-1]
519
+ clip_hist_percent *= (maximum/100.0)
520
+ clip_hist_percent /= 2.0
521
+
522
+ # Locate left cut
523
+ minimum_gray = 0
524
+ while accumulator[minimum_gray] < clip_hist_percent:
525
+ minimum_gray += 1
526
+
527
+ # Locate right cut
528
+ maximum_gray = hist_size -1
529
+ while accumulator[maximum_gray] >= (maximum - clip_hist_percent):
530
+ maximum_gray -= 1
531
+
532
+ # Calculate alpha and beta values
533
+ alpha = 255 / (maximum_gray - minimum_gray)
534
+ beta = -minimum_gray * alpha
535
+
536
+ '''
537
+ # Calculate new histogram with desired range and show histogram
538
+ new_hist = cv2.calcHist([gray],[0],None,[256],[minimum_gray,maximum_gray])
539
+ plt.plot(hist)
540
+ plt.plot(new_hist)
541
+ plt.xlim([0,256])
542
+ plt.show()
543
+ '''
544
+
545
+ auto_result = cv2.convertScaleAbs(image, alpha=alpha, beta=beta)
546
+ return (auto_result, alpha, beta)
547
+
548
+
549
+ if __name__ == '__main__':
550
+ #print('External Service port is:' +os.environ.get('SPORT'))
551
+ os.environ["RW_PORT"] = "7860"
552
+ print("Launched...")
553
+ runway.run()
requirements.txt ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ absl-py
2
+ asn1crypto
3
+ astor
4
+ backports.weakref
5
+ Brotli
6
+ certifi
7
+ cffi
8
+ chardet
9
+ click
10
+ colorcet
11
+ conda
12
+ conda-package-handling
13
+ cryptography
14
+ enum34
15
+ Flask
16
+ Flask-Compress
17
+ Flask-Cors
18
+ Flask-Sockets
19
+ funcsigs
20
+ functools32
21
+ futures
22
+ gast
23
+ gevent
24
+ gevent-websocket
25
+ google-pasta
26
+ greenlet
27
+ grpcio
28
+ h5py
29
+ idna
30
+ ipaddress
31
+ itsdangerous
32
+ Jinja2
33
+ Keras-Applications
34
+ Keras-Preprocessing
35
+ Markdown
36
+ MarkupSafe
37
+ mock
38
+ numpy
39
+ opencv-python
40
+ opt-einsum
41
+ packaging
42
+ param
43
+ Pillow
44
+ protobuf
45
+ pycosat
46
+ pycparser
47
+ pycrypto
48
+ pyct
49
+ pyOpenSSL
50
+ pyparsing
51
+ PySocks
52
+ PyYAML
53
+ requests
54
+ runway-model-runner
55
+ runway-python
56
+ scipy
57
+ six
58
+ tensorboard
59
+ tensorflow
60
+ tensorflow-estimator
61
+ termcolor
62
+ tqdm
63
+ Unidecode
64
+ urllib3
65
+ Werkzeug
66
+ wget
67
+ wrapt
68
+ zope.event
69
+ zope.interface
server.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import tensorflow as tf
4
+ from module import encoder, decoder
5
+ from glob import glob
6
+ import runway
7
+
8
+
9
+ @runway.setup(options={"styleCheckpoint": runway.file(is_directory=True)})
10
+ def setup(opts):
11
+ sess = tf.Session()
12
+ init_op = tf.global_variables_initializer()
13
+ sess.run(init_op)
14
+ with tf.name_scope("placeholder"):
15
+ input_photo = tf.placeholder(
16
+ dtype=tf.float32, shape=[1, None, None, 3], name="photo"
17
+ )
18
+ input_photo_features = encoder(
19
+ image=input_photo, options={"gf_dim": 32}, reuse=False
20
+ )
21
+ output_photo = decoder(
22
+ features=input_photo_features, options={"gf_dim": 32}, reuse=False
23
+ )
24
+ saver = tf.train.Saver()
25
+ path = opts["styleCheckpoint"]
26
+ model_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][
27
+ 0
28
+ ]
29
+ checkpoint_dir = os.path.join(path, model_name, "checkpoint_long")
30
+ ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
31
+ ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
32
+ saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name))
33
+ return dict(sess=sess, input_photo=input_photo, output_photo=output_photo)
34
+
35
+
36
+ @runway.command(
37
+ "stylize",
38
+ inputs={"contentImage": runway.image},
39
+ outputs={"stylizedImage": runway.image},
40
+ )
41
+ def stylize(model, inp):
42
+ img = inp["contentImage"]
43
+ img = np.array(img)
44
+ img = img / 127.5 - 1.0
45
+ img = np.expand_dims(img, axis=0)
46
+ img = model["sess"].run(
47
+ model["output_photo"], feed_dict={model["input_photo"]: img}
48
+ )
49
+ img = (img + 1.0) * 127.5
50
+ img = img.astype("uint8")
51
+ img = img[0]
52
+ return dict(stylizedImage=img)
53
+
54
+
55
+ if __name__ == "__main__":
56
+ #print("External Service port is:" + os.environ.get("SPORT",7860))
57
+ #set env var: RW_PORT=7860
58
+ os.environ["RW_PORT"] = "7860"
59
+ runway.run()