Spaces:
Build error
Build error
#!/usr/bin/env python3 -u | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
import os | |
import os.path as osp | |
import numpy as np | |
import tqdm | |
import torch | |
import random | |
from shutil import copyfile | |
from npy_append_array import NpyAppendArray | |
def get_parser(): | |
parser = argparse.ArgumentParser( | |
description="transforms features via a given pca and stored them in target dir" | |
) | |
# fmt: off | |
parser.add_argument('source', help='directory with features') | |
parser.add_argument('--split', help='which split to read', required=True) | |
parser.add_argument('--save-dir', help='where to save the output', required=True) | |
parser.add_argument('--cluster-dir', help='where the clusters are') | |
parser.add_argument('--pooling', type=str, default='mean', choices=['mean', 'sample'], help='how to pool') | |
# fmt: on | |
return parser | |
def main(): | |
parser = get_parser() | |
args = parser.parse_args() | |
source_path = osp.join(args.source, args.split) | |
cluster_path = osp.join(args.cluster_dir, args.split + ".src") | |
print(f"data path: {source_path}") | |
features = np.load(source_path + ".npy", mmap_mode="r") | |
sizes = [] | |
offsets = [] | |
offset = 0 | |
with open(source_path + ".lengths", "r") as len_f: | |
for line in len_f: | |
length = int(line.rstrip()) | |
sizes.append(length) | |
offsets.append(offset) | |
offset += length | |
clusters = [] | |
with open(cluster_path, "r") as cf: | |
for line in cf: | |
line = line.rstrip() | |
items = line.split() | |
items = list(map(int, items)) | |
clusters.append(items) | |
os.makedirs(args.save_dir, exist_ok=True) | |
save_path = osp.join(args.save_dir, args.split) | |
copyfile(source_path + ".tsv", save_path + ".tsv") | |
if os.path.exists(source_path + ".phn"): | |
copyfile(source_path + ".phn", save_path + ".phn") | |
if os.path.exists(osp.join(args.source, "dict.phn.txt")): | |
copyfile( | |
osp.join(args.source, "dict.phn.txt"), | |
osp.join(args.save_dir, "dict.phn.txt"), | |
) | |
if os.path.exists(source_path + ".wrd"): | |
copyfile(source_path + ".wrd", save_path + ".wrd") | |
if osp.exists(save_path + ".npy"): | |
os.remove(save_path + ".npy") | |
npaa = NpyAppendArray(save_path + ".npy") | |
def merge(feats, clust): | |
feats = torch.from_numpy(feats.copy()) | |
clust = torch.LongTensor(clust) | |
_, counts = clust.unique_consecutive(return_counts=True) | |
curr = 0 | |
merged = [] | |
for c in counts: | |
c = c.item() | |
start = curr | |
end = curr + c | |
curr += c | |
if args.pooling == "mean": | |
new_x = feats[start:end].mean(dim=0) | |
elif args.pooling == "sample": | |
new_x = feats[start + int(random.random() * c)] | |
else: | |
raise NotImplementedError() | |
merged.append(new_x) | |
return torch.stack(merged, dim=0).numpy() | |
with open(save_path + ".lengths", "w") as l_f: | |
for size, offset, clust in tqdm.tqdm( | |
zip(sizes, offsets, clusters), total=len(sizes) | |
): | |
end = size + offset | |
feats = features[offset:end] | |
feats = merge(feats, clust) | |
print(len(feats), file=l_f) | |
npaa.append(feats) | |
if __name__ == "__main__": | |
main() | |