Spaces:
Build error
Build error
File size: 3,543 Bytes
8c90e7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import os
import os.path as osp
import numpy as np
import tqdm
import torch
import random
from shutil import copyfile
from npy_append_array import NpyAppendArray
def get_parser():
parser = argparse.ArgumentParser(
description="transforms features via a given pca and stored them in target dir"
)
# fmt: off
parser.add_argument('source', help='directory with features')
parser.add_argument('--split', help='which split to read', required=True)
parser.add_argument('--save-dir', help='where to save the output', required=True)
parser.add_argument('--cluster-dir', help='where the clusters are')
parser.add_argument('--pooling', type=str, default='mean', choices=['mean', 'sample'], help='how to pool')
# fmt: on
return parser
def main():
parser = get_parser()
args = parser.parse_args()
source_path = osp.join(args.source, args.split)
cluster_path = osp.join(args.cluster_dir, args.split + ".src")
print(f"data path: {source_path}")
features = np.load(source_path + ".npy", mmap_mode="r")
sizes = []
offsets = []
offset = 0
with open(source_path + ".lengths", "r") as len_f:
for line in len_f:
length = int(line.rstrip())
sizes.append(length)
offsets.append(offset)
offset += length
clusters = []
with open(cluster_path, "r") as cf:
for line in cf:
line = line.rstrip()
items = line.split()
items = list(map(int, items))
clusters.append(items)
os.makedirs(args.save_dir, exist_ok=True)
save_path = osp.join(args.save_dir, args.split)
copyfile(source_path + ".tsv", save_path + ".tsv")
if os.path.exists(source_path + ".phn"):
copyfile(source_path + ".phn", save_path + ".phn")
if os.path.exists(osp.join(args.source, "dict.phn.txt")):
copyfile(
osp.join(args.source, "dict.phn.txt"),
osp.join(args.save_dir, "dict.phn.txt"),
)
if os.path.exists(source_path + ".wrd"):
copyfile(source_path + ".wrd", save_path + ".wrd")
if osp.exists(save_path + ".npy"):
os.remove(save_path + ".npy")
npaa = NpyAppendArray(save_path + ".npy")
def merge(feats, clust):
feats = torch.from_numpy(feats.copy())
clust = torch.LongTensor(clust)
_, counts = clust.unique_consecutive(return_counts=True)
curr = 0
merged = []
for c in counts:
c = c.item()
start = curr
end = curr + c
curr += c
if args.pooling == "mean":
new_x = feats[start:end].mean(dim=0)
elif args.pooling == "sample":
new_x = feats[start + int(random.random() * c)]
else:
raise NotImplementedError()
merged.append(new_x)
return torch.stack(merged, dim=0).numpy()
with open(save_path + ".lengths", "w") as l_f:
for size, offset, clust in tqdm.tqdm(
zip(sizes, offsets, clusters), total=len(sizes)
):
end = size + offset
feats = features[offset:end]
feats = merge(feats, clust)
print(len(feats), file=l_f)
npaa.append(feats)
if __name__ == "__main__":
main()
|