guetLzy commited on
Commit
42a4c72
·
verified ·
1 Parent(s): ffce67b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +183 -0
app.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import librosa
4
+ import gradio as gr
5
+ from scipy.io.wavfile import write
6
+ from huggingface_hub import hf_hub_download, snapshot_download
7
+ import utils
8
+ from models import SynthesizerTrn
9
+ from mel_processing import mel_spectrogram_torch
10
+ from speaker_encoder.voice_encoder import SpeakerEncoder
11
+ import logging
12
+ from transformers import Wav2Vec2FeatureExtractor, HubertModel
13
+
14
+ # 设置日志级别
15
+ logging.getLogger('numba').setLevel(logging.WARNING)
16
+
17
+ # 模型配置
18
+ MODEL_CONFIG = {
19
+ "freevc": {
20
+ "repo_id": "guetLzy/Chinese-FreeVC-Model", # FreeVC模型仓库
21
+ "files": ["G_17000.pth", "G_35000.pth"] # 需要下载的模型文件
22
+ },
23
+ "hubert": {
24
+ "repo_id": "guetLzy/chinese-hubert-large-fariseq-ckpt", # 中文HuBERT官方仓库
25
+ }
26
+ }
27
+
28
+ # 设备设置
29
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
30
+
31
+ # 可用的模型选项
32
+ MODEL_OPTIONS = {
33
+ "Model_17000": "model/G_17000.pth",
34
+ "Model_35000": "model/G_35000.pth", # 新增 G_35000.pth 选项
35
+ }
36
+
37
+ def download_models():
38
+ """下载所有需要的模型文件"""
39
+ os.makedirs("model", exist_ok=True)
40
+ os.makedirs("hubert/chinese-hubert-large-fairseq-ckpt", exist_ok=True)
41
+
42
+ # 下载FreeVC模型
43
+ freevc_paths = {}
44
+ for model_name, model_path in MODEL_OPTIONS.items():
45
+ path = hf_hub_download(
46
+ repo_id=MODEL_CONFIG["freevc"]["repo_id"],
47
+ filename=os.path.basename(model_path),
48
+ local_dir="model",
49
+ resume_download=True
50
+ )
51
+ freevc_paths[model_name] = path
52
+
53
+ # 下载整个HuBERT仓库
54
+ hubert_dir = "hubert/chinese-hubert-large-fairseq-ckpt"
55
+ snapshot_download(
56
+ repo_id=MODEL_CONFIG["hubert"]["repo_id"],
57
+ local_dir=hubert_dir,
58
+ repo_type="model",
59
+ resume_download=True
60
+ )
61
+ hubert_paths = {"snapshot": hubert_dir} # 返回整个目录路径
62
+
63
+ return {
64
+ "freevc": freevc_paths,
65
+ "hubert": hubert_paths
66
+ }
67
+
68
+ def load_hubert(hubert_dir):
69
+ """加载HuBERT模型(使用fairseq格式的检查点)"""
70
+ print("正在加载 HuBERT 模型...")
71
+
72
+ # 加载标准HuBERT模型
73
+ model = HubertModel.from_pretrained(hubert_dir)
74
+ feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_dir)
75
+
76
+ return model.to(device).float().eval(), feature_extractor
77
+
78
+ def load_freevc(model_path):
79
+ """加载FreeVC模型(使用本地配置文件)"""
80
+ print(f"正在从 {model_path} 加载 FreeVC 模型...")
81
+ hps = utils.get_hparams_from_file("configs/freevc.json") # 本地配置文件
82
+
83
+ net_g = SynthesizerTrn(
84
+ hps.data.filter_length // 2 + 1,
85
+ hps.train.segment_size // hps.data.hop_length,
86
+ **hps.model
87
+ ).to(device)
88
+
89
+ utils.load_checkpoint(model_path, net_g, None, True)
90
+ net_g.eval()
91
+
92
+ # 加载本地说话人编码器
93
+ smodel = SpeakerEncoder("speaker_encoder/ckpt/pretrained_bak_5805000.pt") if hps.model.use_spk else None
94
+ return net_g, smodel, hps
95
+
96
+ # 预加载模型
97
+ print("正在下载模型...")
98
+ model_paths = download_models()
99
+ print(model_paths)
100
+ print("正在初始化 HuBERT...")
101
+ hubert_dir = "hubert/chinese-hubert-large-fairseq-ckpt"
102
+ hubert_model, hubert_feature_extractor = load_hubert(hubert_dir)
103
+
104
+ def voice_conversion(src_audio, tgt_audio, output_name, model_selection):
105
+ """执行语音转换"""
106
+ try:
107
+ # 加载选中的FreeVC模型
108
+ freevc_model, speaker_model, hps = load_freevc(MODEL_OPTIONS[model_selection])
109
+
110
+ with torch.no_grad():
111
+ # 处理目标音频
112
+ wav_tgt, _ = librosa.load(tgt_audio, sr=hps.data.sampling_rate)
113
+ wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
114
+
115
+ if hps.model.use_spk:
116
+ g_tgt = speaker_model.embed_utterance(wav_tgt)
117
+ g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(device)
118
+ else:
119
+ wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(device)
120
+ mel_tgt = mel_spectrogram_torch(
121
+ wav_tgt,
122
+ hps.data.filter_length,
123
+ hps.data.n_mel_channels,
124
+ hps.data.sampling_rate,
125
+ hps.data.hop_length,
126
+ hps.data.win_length,
127
+ hps.data.mel_fmin,
128
+ hps.data.mel_fmax
129
+ )
130
+
131
+ # 处理源音频(HuBERT需要16kHz)
132
+ wav_src, _ = librosa.load(src_audio, sr=16000)
133
+ inputs = hubert_feature_extractor(
134
+ wav_src,
135
+ return_tensors="pt",
136
+ sampling_rate=16000
137
+ ).input_values.to(device)
138
+
139
+ c = hubert_model(inputs.float()).last_hidden_state.transpose(1, 2)
140
+
141
+ # 执行转换
142
+ audio = freevc_model.infer(c, g=g_tgt) if hps.model.use_spk else freevc_model.infer(c, mel=mel_tgt)
143
+
144
+ # 保存结果
145
+ os.makedirs("output", exist_ok=True)
146
+ output_path = f"output/{output_name}.wav"
147
+ write(output_path, hps.data.sampling_rate, audio[0][0].data.cpu().float().numpy())
148
+
149
+ return output_path
150
+
151
+ except Exception as e:
152
+ print(f"转换错误: {str(e)}")
153
+ return None
154
+
155
+ # Gradio界面
156
+ with gr.Blocks(title="Chinese-FreeVC 语音转换") as app:
157
+ gr.Markdown("## Chinese-FreeVC 语音转换系统")
158
+
159
+ with gr.Row():
160
+ with gr.Column():
161
+ src_input = gr.Audio(label="源语音", type="filepath")
162
+ tgt_input = gr.Audio(label="目标音色", type="filepath")
163
+ model_dropdown = gr.Dropdown(
164
+ choices=list(MODEL_OPTIONS.keys()),
165
+ label="选择模型",
166
+ value="Model_17000"
167
+ )
168
+ output_name = gr.Textbox(label="输出文件名", value="converted")
169
+ convert_btn = gr.Button("开始转换", variant="primary")
170
+
171
+ with gr.Column():
172
+ output_audio = gr.Audio(label="转换结果", interactive=False)
173
+ status = gr.Textbox(label="状态")
174
+
175
+ convert_btn.click(
176
+ fn=voice_conversion,
177
+ inputs=[src_input, tgt_input, output_name, model_dropdown],
178
+ outputs=[output_audio],
179
+ api_name="convert"
180
+ )
181
+
182
+ if __name__ == "__main__":
183
+ app.launch(server_name="0.0.0.0", server_port=7860)