guetLzy commited on
Commit
ffce67b
·
verified ·
1 Parent(s): 6eedad8

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -183
app.py DELETED
@@ -1,183 +0,0 @@
1
- import os
2
- import torch
3
- import librosa
4
- import gradio as gr
5
- from scipy.io.wavfile import write
6
- from huggingface_hub import hf_hub_download, snapshot_download
7
- import utils
8
- from models import SynthesizerTrn
9
- from mel_processing import mel_spectrogram_torch
10
- from speaker_encoder.voice_encoder import SpeakerEncoder
11
- import logging
12
- from transformers import Wav2Vec2FeatureExtractor, HubertModel
13
-
14
- # 设置日志级别
15
- logging.getLogger('numba').setLevel(logging.WARNING)
16
-
17
- # 模型配置
18
- MODEL_CONFIG = {
19
- "freevc": {
20
- "repo_id": "guetLzy/Chinese-FreeVC-Model", # FreeVC模型仓库
21
- "files": ["G_17000.pth", "G_35000.pth"] # 需要下载的模型文件
22
- },
23
- "hubert": {
24
- "repo_id": "guetLzy/chinese-hubert-large-fariseq-ckpt", # 中文HuBERT官方仓库
25
- }
26
- }
27
-
28
- # 设备设置
29
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
30
-
31
- # 可用的模型选项
32
- MODEL_OPTIONS = {
33
- "Model_17000": "model/G_17000.pth",
34
- "Model_35000": "model/G_35000.pth", # 新增 G_35000.pth 选项
35
- }
36
-
37
- def download_models():
38
- """下载所有需要的模型文件"""
39
- os.makedirs("model", exist_ok=True)
40
- os.makedirs("hubert/chinese-hubert-large-fairseq-ckpt", exist_ok=True)
41
-
42
- # 下载FreeVC模型
43
- freevc_paths = {}
44
- for model_name, model_path in MODEL_OPTIONS.items():
45
- path = hf_hub_download(
46
- repo_id=MODEL_CONFIG["freevc"]["repo_id"],
47
- filename=os.path.basename(model_path),
48
- local_dir="model",
49
- resume_download=True
50
- )
51
- freevc_paths[model_name] = path
52
-
53
- # 下载整个HuBERT仓库
54
- hubert_dir = "hubert/chinese-hubert-large-fairseq-ckpt"
55
- snapshot_download(
56
- repo_id=MODEL_CONFIG["hubert"]["repo_id"],
57
- local_dir=hubert_dir,
58
- repo_type="model",
59
- resume_download=True
60
- )
61
- hubert_paths = {"snapshot": hubert_dir} # 返回整个目录路径
62
-
63
- return {
64
- "freevc": freevc_paths,
65
- "hubert": hubert_paths
66
- }
67
-
68
- def load_hubert(hubert_dir):
69
- """加载HuBERT模型(使用fairseq格式的检查点)"""
70
- print("正在加载 HuBERT 模型...")
71
-
72
- # 加载标准HuBERT模型
73
- model = HubertModel.from_pretrained(hubert_dir)
74
- feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_dir)
75
-
76
- return model.to(device).float().eval(), feature_extractor
77
-
78
- def load_freevc(model_path):
79
- """加载FreeVC模型(使用本地配置文件)"""
80
- print(f"正在从 {model_path} 加载 FreeVC 模型...")
81
- hps = utils.get_hparams_from_file("configs/freevc.json") # 本地配置文件
82
-
83
- net_g = SynthesizerTrn(
84
- hps.data.filter_length // 2 + 1,
85
- hps.train.segment_size // hps.data.hop_length,
86
- **hps.model
87
- ).to(device)
88
-
89
- utils.load_checkpoint(model_path, net_g, None, True)
90
- net_g.eval()
91
-
92
- # 加载本地说话人编码器
93
- smodel = SpeakerEncoder("speaker_encoder/ckpt/pretrained_bak_5805000.pt") if hps.model.use_spk else None
94
- return net_g, smodel, hps
95
-
96
- # 预加载模型
97
- print("正在下载模型...")
98
- model_paths = download_models()
99
- print(model_paths)
100
- print("正在初始化 HuBERT...")
101
- hubert_dir = "hubert/chinese-hubert-large-fairseq-ckpt"
102
- hubert_model, hubert_feature_extractor = load_hubert(hubert_dir)
103
-
104
- def voice_conversion(src_audio, tgt_audio, output_name, model_selection):
105
- """执行语音转换"""
106
- try:
107
- # 加载选中的FreeVC模型
108
- freevc_model, speaker_model, hps = load_freevc(MODEL_OPTIONS[model_selection])
109
-
110
- with torch.no_grad():
111
- # 处理目标音频
112
- wav_tgt, _ = librosa.load(tgt_audio, sr=hps.data.sampling_rate)
113
- wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
114
-
115
- if hps.model.use_spk:
116
- g_tgt = speaker_model.embed_utterance(wav_tgt)
117
- g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(device)
118
- else:
119
- wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(device)
120
- mel_tgt = mel_spectrogram_torch(
121
- wav_tgt,
122
- hps.data.filter_length,
123
- hps.data.n_mel_channels,
124
- hps.data.sampling_rate,
125
- hps.data.hop_length,
126
- hps.data.win_length,
127
- hps.data.mel_fmin,
128
- hps.data.mel_fmax
129
- )
130
-
131
- # 处理源音频(HuBERT需要16kHz)
132
- wav_src, _ = librosa.load(src_audio, sr=16000)
133
- inputs = hubert_feature_extractor(
134
- wav_src,
135
- return_tensors="pt",
136
- sampling_rate=16000
137
- ).input_values.to(device)
138
-
139
- c = hubert_model(inputs.float()).last_hidden_state.transpose(1, 2)
140
-
141
- # 执行转换
142
- audio = freevc_model.infer(c, g=g_tgt) if hps.model.use_spk else freevc_model.infer(c, mel=mel_tgt)
143
-
144
- # 保存结果
145
- os.makedirs("output", exist_ok=True)
146
- output_path = f"output/{output_name}.wav"
147
- write(output_path, hps.data.sampling_rate, audio[0][0].data.cpu().float().numpy())
148
-
149
- return output_path
150
-
151
- except Exception as e:
152
- print(f"转换错误: {str(e)}")
153
- return None
154
-
155
- # Gradio界面
156
- with gr.Blocks(title="Chinese-FreeVC 语音转换") as app:
157
- gr.Markdown("## Chinese-FreeVC 语音转换系统")
158
-
159
- with gr.Row():
160
- with gr.Column():
161
- src_input = gr.Audio(label="源语音", type="filepath")
162
- tgt_input = gr.Audio(label="目标音色", type="filepath")
163
- model_dropdown = gr.Dropdown(
164
- choices=list(MODEL_OPTIONS.keys()),
165
- label="选择模型",
166
- value="Model_17000"
167
- )
168
- output_name = gr.Textbox(label="输出文件名", value="converted")
169
- convert_btn = gr.Button("开始转换", variant="primary")
170
-
171
- with gr.Column():
172
- output_audio = gr.Audio(label="转换结果", interactive=False)
173
- status = gr.Textbox(label="状态")
174
-
175
- convert_btn.click(
176
- fn=voice_conversion,
177
- inputs=[src_input, tgt_input, output_name, model_dropdown],
178
- outputs=[output_audio],
179
- api_name="convert"
180
- )
181
-
182
- if __name__ == "__main__":
183
- app.launch(server_name="0.0.0.0", server_port=7860)