sdxl-texture / app.py
gsbm's picture
Update app.py
c4f511b verified
raw
history blame
7.99 kB
import os
import random
import base64
import gradio as gr
from PIL import Image
from gradio_client import Client
import numpy as np
from io import BytesIO
DESCRIPTION = "# SDXL Texture"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def generate_normal_map(image):
if not isinstance(image, Image.Image):
image = Image.open(BytesIO(image))
# Convert image to grayscale
grayscale = image.convert("L")
grayscale_np = np.array(grayscale)
# Compute gradients
grad_x, grad_y = np.gradient(grayscale_np.astype(float))
# Normalize gradients
grad_x = (grad_x - grad_x.min()) / (grad_x.max() - grad_x.min())
grad_y = (grad_y - grad_y.min()) / (grad_y.max() - grad_y.min())
# Create normal map
normal_map = np.dstack((grad_x, grad_y, np.ones_like(grad_x)))
normal_map = (normal_map * 255).astype(np.uint8)
return Image.fromarray(normal_map)
def fix_base64_padding(base64_str):
return base64_str + "=" * (-len(base64_str) % 4)
def generate_image(
prompt: str,
negative_prompt: str = "",
prompt_2: str = "",
negative_prompt_2: str = "",
use_negative_prompt: bool = False,
use_prompt_2: bool = False,
use_negative_prompt_2: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale_base: float = 5.0,
guidance_scale_refiner: float = 5.0,
num_inference_steps_base: int = 25,
num_inference_steps_refiner: int = 25,
apply_refiner: bool = False,
):
client = Client("hysts/SDXL")
image = client.predict(
prompt="((Seamless texture)), versatile pattern, high resolution, detailed design, subtle patterns, non-repetitive, smooth edges, square, "+prompt,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
use_negative_prompt=use_negative_prompt,
use_prompt_2=use_prompt_2,
use_negative_prompt_2=use_negative_prompt_2,
seed=seed,
width=width,
height=height,
guidance_scale_base=guidance_scale_base,
guidance_scale_refiner=guidance_scale_refiner,
num_inference_steps_base=num_inference_steps_base,
num_inference_steps_refiner=num_inference_steps_refiner,
apply_refiner=apply_refiner,
api_name="/run",
)
normal_map = generate_normal_map(Image.open(image))
return image, normal_map
examples = [
"A texture of wooden planks, grey wood, high contrast",
"A 4K texture of cobblestone, rocks, hd material",
"A texture of sandstone, light grey, seamless",
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Row():
result_image = gr.Image(label="Texture", show_label=True)
result_normal = gr.Image(label="Normal", show_label=True)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
value="anatomy, text, logos, faces, animals, recognizable objects, cube, sphere, human, hands",
)
prompt_2 = gr.Text(
label="Prompt 2",
max_lines=1,
placeholder="Enter your prompt",
visible=False,
)
negative_prompt_2 = gr.Text(
label="Negative prompt 2",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
with gr.Row():
guidance_scale_base = gr.Slider(
label="Guidance scale for base",
minimum=1,
maximum=20,
step=0.1,
value=5.0,
)
num_inference_steps_base = gr.Slider(
label="Number of inference steps for base",
minimum=10,
maximum=100,
step=1,
value=25,
)
with gr.Row(visible=False) as refiner_params:
guidance_scale_refiner = gr.Slider(
label="Guidance scale for refiner",
minimum=1,
maximum=20,
step=0.1,
value=5.0,
)
num_inference_steps_refiner = gr.Slider(
label="Number of inference steps for refiner",
minimum=10,
maximum=100,
step=1,
value=25,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result_image, result_normal],
fn=generate_image,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
queue=False,
api_name=False,
)
use_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_prompt_2,
outputs=prompt_2,
queue=False,
api_name=False,
)
use_negative_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt_2,
outputs=negative_prompt_2,
queue=False,
api_name=False,
)
apply_refiner.change(
fn=lambda x: gr.update(visible=x),
inputs=apply_refiner,
outputs=refiner_params,
queue=False,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
prompt_2.submit,
negative_prompt_2.submit,
run_button.click,
],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_image,
inputs=[
prompt,
negative_prompt,
prompt_2,
negative_prompt_2,
use_negative_prompt,
use_prompt_2,
use_negative_prompt_2,
seed,
width,
height,
guidance_scale_base,
guidance_scale_refiner,
num_inference_steps_base,
num_inference_steps_refiner,
apply_refiner,
],
outputs=[result_image, result_normal],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()