Spaces:
Runtime error
Runtime error
File size: 7,989 Bytes
0edd51d 5d72442 0edd51d b29dae5 59190de c8487d0 8a56a43 0edd51d 7378fc3 0edd51d 89539f7 0edd51d 13b1725 8a56a43 13b1725 59190de f3f50b1 ebbe4cc f3f50b1 13b1725 89539f7 d8fa9a9 89539f7 35efd64 3423af0 0e124a3 7378fc3 59190de 5298720 59190de 0e124a3 13b1725 0edd51d 7378fc3 c4f511b 0edd51d 89539f7 0edd51d f864b44 0edd51d 89539f7 0edd51d 89539f7 0edd51d 89539f7 c4f511b 89539f7 f864b44 1aebf94 6773e73 89539f7 f864b44 89539f7 f864b44 89539f7 ea5b528 7378fc3 f864b44 89539f7 f864b44 89539f7 6773e73 f864b44 89539f7 f864b44 89539f7 f864b44 89539f7 f864b44 89539f7 f864b44 0edd51d f864b44 89539f7 f864b44 e816968 f864b44 0edd51d 89539f7 f864b44 89539f7 f864b44 89539f7 f864b44 d8fa9a9 89539f7 f864b44 89539f7 f864b44 89539f7 f864b44 89539f7 f864b44 d8fa9a9 89539f7 0edd51d 89539f7 13b1725 89539f7 0edd51d 59bd43d 0edd51d 13b1725 59bd43d 13b1725 0edd51d 89539f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import os
import random
import base64
import gradio as gr
from PIL import Image
from gradio_client import Client
import numpy as np
from io import BytesIO
DESCRIPTION = "# SDXL Texture"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def generate_normal_map(image):
if not isinstance(image, Image.Image):
image = Image.open(BytesIO(image))
# Convert image to grayscale
grayscale = image.convert("L")
grayscale_np = np.array(grayscale)
# Compute gradients
grad_x, grad_y = np.gradient(grayscale_np.astype(float))
# Normalize gradients
grad_x = (grad_x - grad_x.min()) / (grad_x.max() - grad_x.min())
grad_y = (grad_y - grad_y.min()) / (grad_y.max() - grad_y.min())
# Create normal map
normal_map = np.dstack((grad_x, grad_y, np.ones_like(grad_x)))
normal_map = (normal_map * 255).astype(np.uint8)
return Image.fromarray(normal_map)
def fix_base64_padding(base64_str):
return base64_str + "=" * (-len(base64_str) % 4)
def generate_image(
prompt: str,
negative_prompt: str = "",
prompt_2: str = "",
negative_prompt_2: str = "",
use_negative_prompt: bool = False,
use_prompt_2: bool = False,
use_negative_prompt_2: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale_base: float = 5.0,
guidance_scale_refiner: float = 5.0,
num_inference_steps_base: int = 25,
num_inference_steps_refiner: int = 25,
apply_refiner: bool = False,
):
client = Client("hysts/SDXL")
image = client.predict(
prompt="((Seamless texture)), versatile pattern, high resolution, detailed design, subtle patterns, non-repetitive, smooth edges, square, "+prompt,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
use_negative_prompt=use_negative_prompt,
use_prompt_2=use_prompt_2,
use_negative_prompt_2=use_negative_prompt_2,
seed=seed,
width=width,
height=height,
guidance_scale_base=guidance_scale_base,
guidance_scale_refiner=guidance_scale_refiner,
num_inference_steps_base=num_inference_steps_base,
num_inference_steps_refiner=num_inference_steps_refiner,
apply_refiner=apply_refiner,
api_name="/run",
)
normal_map = generate_normal_map(Image.open(image))
return image, normal_map
examples = [
"A texture of wooden planks, grey wood, high contrast",
"A 4K texture of cobblestone, rocks, hd material",
"A texture of sandstone, light grey, seamless",
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Row():
result_image = gr.Image(label="Texture", show_label=True)
result_normal = gr.Image(label="Normal", show_label=True)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
value="anatomy, text, logos, faces, animals, recognizable objects, cube, sphere, human, hands",
)
prompt_2 = gr.Text(
label="Prompt 2",
max_lines=1,
placeholder="Enter your prompt",
visible=False,
)
negative_prompt_2 = gr.Text(
label="Negative prompt 2",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
with gr.Row():
guidance_scale_base = gr.Slider(
label="Guidance scale for base",
minimum=1,
maximum=20,
step=0.1,
value=5.0,
)
num_inference_steps_base = gr.Slider(
label="Number of inference steps for base",
minimum=10,
maximum=100,
step=1,
value=25,
)
with gr.Row(visible=False) as refiner_params:
guidance_scale_refiner = gr.Slider(
label="Guidance scale for refiner",
minimum=1,
maximum=20,
step=0.1,
value=5.0,
)
num_inference_steps_refiner = gr.Slider(
label="Number of inference steps for refiner",
minimum=10,
maximum=100,
step=1,
value=25,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result_image, result_normal],
fn=generate_image,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
queue=False,
api_name=False,
)
use_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_prompt_2,
outputs=prompt_2,
queue=False,
api_name=False,
)
use_negative_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt_2,
outputs=negative_prompt_2,
queue=False,
api_name=False,
)
apply_refiner.change(
fn=lambda x: gr.update(visible=x),
inputs=apply_refiner,
outputs=refiner_params,
queue=False,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
prompt_2.submit,
negative_prompt_2.submit,
run_button.click,
],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_image,
inputs=[
prompt,
negative_prompt,
prompt_2,
negative_prompt_2,
use_negative_prompt,
use_prompt_2,
use_negative_prompt_2,
seed,
width,
height,
guidance_scale_base,
guidance_scale_refiner,
num_inference_steps_base,
num_inference_steps_refiner,
apply_refiner,
],
outputs=[result_image, result_normal],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|