SentimentAnalysis / model.py
gruhit-patel's picture
Initial Commit
c7210e6 verified
raw
history blame
9.33 kB
import tensorflow as tf
import keras
from keras import layers
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import auc, roc_curve
def positional_encoding(length, depth):
depth = depth/2
positions = np.arange(length)[:, np.newaxis]
depths = np.arange(depth)[np.newaxis, :]/depth
angle_rates = 1/(10000**depths)
angle_rads = positions * angle_rates
pos_encoding = np.concatenate(
[np.sin(angle_rads), np.cos(angle_rads)],
axis=-1
)
return tf.cast(pos_encoding, dtype=tf.float32)
# Token Emebdding Layer and Positional Encoding
class TokenEmbedding(layers.Layer):
def __init__(self, vocab_size, emb_dim, max_len, dropout = None, regularizer = None):
super(TokenEmbedding, self).__init__()
self.vocab_size = vocab_size
self.emb_dim = emb_dim
self.max_len = max_len
self.token_emb = layers.Embedding(
self.vocab_size, self.emb_dim, mask_zero=True, embeddings_regularizer = regularizer
)
self.pos_enc = positional_encoding(self.max_len, self.emb_dim)
self.dropout = dropout
if self.dropout is not None:
self.dropout_layer = layers.Dropout(self.dropout)
def compute_mask(self, *args, **kwargs):
return self.token_emb.compute_mask(*args, **kwargs)
def call(self, x):
length = tf.shape(x)[1]
token_emb = self.token_emb(x)
token_emb *= tf.math.sqrt(tf.cast(self.emb_dim, tf.float32))
token_emb = token_emb + self.pos_enc[tf.newaxis, :length, :]
if self.dropout is not None:
return self.dropout_layer(token_emb)
else:
return token_emb
class Encoder(layers.Layer):
def __init__(
self,
vocab_size,
maxlen,
emb_dim,
num_heads,
ffn_dim,
dropout=0.1,
regularizer = None
):
super(Encoder, self).__init__()
self.vocab_size = vocab_size
self.maxlen = maxlen
self.emb_dim = emb_dim
self.num_heads = num_heads
self.ffn_dim = ffn_dim
self.dropout = dropout
self.attention = None
self.regularizer = regularizer
# In most of the Attention implementation the query, key and value layer do not have biased added
# even in formula we just multipy with the weights and do not add bias.
self.attn = layers.MultiHeadAttention(self.num_heads, self.emb_dim, use_bias=False, kernel_regularizer=self.regularizer)
self.ffn_layer = keras.Sequential([
layers.Dense(self.ffn_dim, activation='relu', kernel_regularizer=self.regularizer),
layers.Dropout(self.dropout),
layers.Dense(self.emb_dim, kernel_regularizer=self.regularizer)
])
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = layers.Dropout(self.dropout)
self.dropout2 = layers.Dropout(self.dropout)
def call(self, x):
attn_output = self.attn(query=x, key=x, value=x, use_causal_mask = True)
x = self.layernorm1(x + self.dropout1(attn_output))
ffn_output = self.ffn_layer(x)
x = self.layernorm2(x + self.dropout2(ffn_output))
return x
@keras.saving.register_keras_serializable()
class Transformer(keras.Model):
def __init__(
self,
vocab_size,
maxlen,
emb_dim,
num_heads,
ffn_dim,
num_classes,
num_layers = 1,
dropout = 0.1,
regularizer = None
):
super(Transformer, self).__init__()
self.vocab_size = vocab_size
self.maxlen = maxlen
self.emb_dim = emb_dim
self.maxlen = maxlen
self.emb_dim = emb_dim
self.num_heads = num_heads
self.ffn_dim = ffn_dim
self.num_classes = num_classes
self.num_layers = num_layers
self.dropout = dropout
self.regularizer = regularizer
self.token_emb = TokenEmbedding(self.vocab_size, self.emb_dim, self.maxlen, self.dropout, self.regularizer)
self.encoder_stack = keras.Sequential([
Encoder(self.vocab_size, self.maxlen, self.emb_dim, self.num_heads, self.ffn_dim, self.dropout, self.regularizer)
for _ in range(self.num_layers)
])
self.average_pool = layers.GlobalAveragePooling1D()
self.dropout_layer = layers.Dropout(self.dropout)
self.clf_head = layers.Dense(self.num_classes, activation='softmax', kernel_regularizer=self.regularizer)
def call(self, x):
x = self.token_emb(x)
x = self.encoder_stack(x)
x = self.average_pool(x)
x = self.dropout_layer(x)
probs = self.clf_head(x)
return probs
# Tooked reference my Deep learning Week-5 Assignment
def visualize_model(self, history):
plt.figure(figsize=(14, 6))
# Extract the metrics to visulalize
metrics = []
# Getting all the metrics we have while model training
hist_metrics = history.history.keys()
for item in hist_metrics:
if item.startswith("val"):
continue
metrics.append(item)
for indx, metric in enumerate(metrics):
title = f'{metric}'
legends = [metric]
plt.subplot(1, 2, indx+1)
plt.plot(history.history[metric], label=metric, marker='o')
val_metric = 'val_' + metric
if val_metric in hist_metrics:
title += f" vs {val_metric}"
plt.plot(history.history[val_metric], label=val_metric, marker='^')
legends.append(val_metric)
plt.legend(legends)
plt.title(title)
plt.show()
def preds(self, dataset: tf.data.Dataset):
y_true = []
y_pred = []
dataset_len = len(dataset)
for inp, label in dataset.take(dataset_len):
pred = self.call(inp).numpy()
y_true.extend(label.numpy())
y_pred.extend(pred)
y_true = np.array(y_true)
y_pred = np.array(y_pred)
y_true_label = np.argmax(y_true, axis=-1)
y_pred_label = np.argmax(y_pred, axis=-1)
return y_true, y_true_label, y_pred, y_pred_label
def plot_confusion_matrix(self, conf_matrix, labels):
plt.figure(figsize=(8, 6))
plt.title("Confusion Matrix", {'size': 14})
sns.heatmap(conf_matrix, annot=True, fmt='d', xticklabels=labels, yticklabels=labels)
plt.xlabel("Predicted", {'size': 12})
plt.ylabel("Actual", {'size': 12})
plt.show()
def plot_roc_curve(self, y_true, y_pred, labels):
fpr = dict()
tpr = dict()
roc_auc = dict()
for i, label in enumerate(labels):
fpr[label], tpr[label], _ = roc_curve(y_true[:, i], y_pred[:, i])
roc_auc[label] = auc(fpr[label], tpr[label])
fpr["micro"], tpr["micro"], _ = roc_curve(y_true.ravel(), y_pred.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
plt.figure(figsize=(6, 6))
plt.title("ROC Curve", {'size': 14})
plt.plot(fpr["micro"], tpr["micro"], label=f"ROC micro-avg area({roc_auc['micro']*100:.1f}%)")
for label in labels:
plt.plot(fpr[label], tpr[label], label=f"ROC {label} area({roc_auc[label]*100:.1f})%")
plt.plot([0, 1], [0, 1], 'k--', label='No Skill')
plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.grid()
plt.legend(loc="lower right")
plt.show()
def get_config(self):
base_config = super().get_config()
config = {
"vocab_size": self.vocab_size,
"maxlen": self.maxlen,
"emb_dim": self.emb_dim,
"num_heads": self.num_heads,
"ffn_dim": self.ffn_dim,
"num_classes": self.num_classes,
"num_layers": self.num_layers,
"dropout": self.dropout,
"regularizer": self.regularizer
}
return {**base_config, **config}
@classmethod
def from_config(cls, config):
vocab_size = config.pop("vocab_size")
maxlen = config.pop("maxlen")
emb_dim = config.pop("emb_dim")
num_heads = config.pop("num_heads")
ffn_dim = config.pop("ffn_dim")
num_classes = config.pop("num_classes")
num_layers = config.pop("num_layers")
dropout = config.pop("dropout")
regularizer = config.pop("regularizer")
return cls(vocab_size, maxlen, emb_dim, num_heads, ffn_dim, num_classes,
num_layers, dropout, regularizer)
def get_model(filepath):
return keras.models.load_model(filepath)