File size: 9,328 Bytes
c7210e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import tensorflow as tf
import keras 
from keras import layers

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import auc, roc_curve

def positional_encoding(length, depth):
    depth = depth/2
    
    positions = np.arange(length)[:, np.newaxis]
    depths = np.arange(depth)[np.newaxis, :]/depth
    
    angle_rates = 1/(10000**depths)
    angle_rads = positions * angle_rates
    
    pos_encoding = np.concatenate(
        [np.sin(angle_rads), np.cos(angle_rads)],
        axis=-1
    )
    
    return tf.cast(pos_encoding, dtype=tf.float32)

#  Token Emebdding Layer and Positional Encoding
class TokenEmbedding(layers.Layer):
    def __init__(self, vocab_size, emb_dim, max_len, dropout = None, regularizer = None):
        super(TokenEmbedding, self).__init__()
        self.vocab_size = vocab_size
        self.emb_dim = emb_dim
        self.max_len = max_len
        self.token_emb = layers.Embedding(
                self.vocab_size, self.emb_dim, mask_zero=True, embeddings_regularizer = regularizer
        )
        self.pos_enc = positional_encoding(self.max_len, self.emb_dim)
        
        self.dropout = dropout
        if self.dropout is not None:
            self.dropout_layer = layers.Dropout(self.dropout)
    
    def compute_mask(self, *args, **kwargs):
        return self.token_emb.compute_mask(*args, **kwargs)

    def call(self, x):
        length = tf.shape(x)[1]
        token_emb = self.token_emb(x)
        token_emb *= tf.math.sqrt(tf.cast(self.emb_dim, tf.float32))
        token_emb = token_emb + self.pos_enc[tf.newaxis, :length, :]
        
        if self.dropout is not None:
            return self.dropout_layer(token_emb)
        else:
            return token_emb
        
class Encoder(layers.Layer):
    def __init__(

            self,

            vocab_size,

            maxlen,

            emb_dim,

            num_heads,

            ffn_dim,

            dropout=0.1,

            regularizer = None

        ):
        super(Encoder, self).__init__()
        self.vocab_size = vocab_size
        self.maxlen = maxlen
        self.emb_dim = emb_dim
        self.num_heads = num_heads
        self.ffn_dim = ffn_dim
        self.dropout = dropout
        self.attention = None
        self.regularizer = regularizer
        
        # In most of the Attention implementation the query, key and value layer do not have biased added 
        # even in formula we just multipy with the weights and do not add bias.
        self.attn = layers.MultiHeadAttention(self.num_heads, self.emb_dim, use_bias=False, kernel_regularizer=self.regularizer)
        self.ffn_layer = keras.Sequential([
            layers.Dense(self.ffn_dim, activation='relu', kernel_regularizer=self.regularizer),
            layers.Dropout(self.dropout),
            layers.Dense(self.emb_dim, kernel_regularizer=self.regularizer)
        ])
        self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
        self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
        self.dropout1 = layers.Dropout(self.dropout)
        self.dropout2 = layers.Dropout(self.dropout)


    def call(self, x):
        attn_output = self.attn(query=x, key=x, value=x, use_causal_mask = True)
        x = self.layernorm1(x + self.dropout1(attn_output))

        ffn_output = self.ffn_layer(x)
        x = self.layernorm2(x + self.dropout2(ffn_output))

        return x

@keras.saving.register_keras_serializable()
class Transformer(keras.Model):
    def __init__(

            self,

            vocab_size,

            maxlen,

            emb_dim,

            num_heads,

            ffn_dim,

            num_classes,

            num_layers = 1,

            dropout = 0.1,

            regularizer = None

    ):
        super(Transformer, self).__init__()
        self.vocab_size = vocab_size
        self.maxlen = maxlen
        self.emb_dim = emb_dim
        self.maxlen = maxlen
        self.emb_dim = emb_dim
        self.num_heads = num_heads
        self.ffn_dim = ffn_dim
        self.num_classes = num_classes
        self.num_layers = num_layers
        self.dropout = dropout
        self.regularizer = regularizer

        self.token_emb = TokenEmbedding(self.vocab_size, self.emb_dim, self.maxlen, self.dropout, self.regularizer)

        self.encoder_stack = keras.Sequential([
            Encoder(self.vocab_size, self.maxlen, self.emb_dim, self.num_heads, self.ffn_dim, self.dropout, self.regularizer)
            for _ in range(self.num_layers)
        ])

        self.average_pool = layers.GlobalAveragePooling1D()
        self.dropout_layer = layers.Dropout(self.dropout)
        self.clf_head = layers.Dense(self.num_classes, activation='softmax', kernel_regularizer=self.regularizer)

    def call(self, x):
        x = self.token_emb(x)
        
        x = self.encoder_stack(x)
        x = self.average_pool(x)
        x = self.dropout_layer(x)
        probs = self.clf_head(x)

        return probs

    # Tooked reference my Deep learning Week-5 Assignment
    def visualize_model(self, history):
        plt.figure(figsize=(14, 6))
        # Extract the metrics to visulalize
        metrics = []

        # Getting all the metrics we have while model training
        hist_metrics = history.history.keys()
        for item in hist_metrics:
            if item.startswith("val"):
                continue

            metrics.append(item)

        for indx, metric in enumerate(metrics):
            title = f'{metric}'
            legends = [metric]
            plt.subplot(1, 2, indx+1)
            plt.plot(history.history[metric], label=metric, marker='o')

            val_metric = 'val_' + metric
            if val_metric in hist_metrics:
                title += f" vs {val_metric}"
                plt.plot(history.history[val_metric], label=val_metric, marker='^')
                legends.append(val_metric)

            plt.legend(legends)
            plt.title(title)

        plt.show()

    def preds(self, dataset: tf.data.Dataset):
        y_true = []
        y_pred = []

        dataset_len = len(dataset)
        for inp, label in dataset.take(dataset_len):
            pred = self.call(inp).numpy()
            y_true.extend(label.numpy())
            y_pred.extend(pred)

        y_true = np.array(y_true)
        y_pred = np.array(y_pred)

        y_true_label = np.argmax(y_true, axis=-1)
        y_pred_label = np.argmax(y_pred, axis=-1)

        return y_true, y_true_label, y_pred, y_pred_label

    def plot_confusion_matrix(self, conf_matrix, labels):
        plt.figure(figsize=(8, 6))
        plt.title("Confusion Matrix", {'size': 14})
        sns.heatmap(conf_matrix, annot=True, fmt='d', xticklabels=labels, yticklabels=labels)
        plt.xlabel("Predicted", {'size': 12})
        plt.ylabel("Actual", {'size': 12})
        plt.show()

    def plot_roc_curve(self, y_true, y_pred, labels):
        fpr = dict()
        tpr = dict()
        roc_auc = dict()

        for i, label in enumerate(labels):
            fpr[label], tpr[label], _ = roc_curve(y_true[:, i], y_pred[:, i])
            roc_auc[label] = auc(fpr[label], tpr[label])

        fpr["micro"], tpr["micro"], _ = roc_curve(y_true.ravel(), y_pred.ravel())
        roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

        plt.figure(figsize=(6, 6))
        plt.title("ROC Curve", {'size': 14})
        plt.plot(fpr["micro"], tpr["micro"], label=f"ROC micro-avg area({roc_auc['micro']*100:.1f}%)")

        for label in labels:
            plt.plot(fpr[label], tpr[label], label=f"ROC {label} area({roc_auc[label]*100:.1f})%")

        plt.plot([0, 1], [0, 1], 'k--', label='No Skill')
        plt.xlim([-0.05, 1.05])
        plt.ylim([-0.05, 1.05])
        plt.xlabel("False Positive Rate")
        plt.ylabel("True Positive Rate")
        plt.grid()
        plt.legend(loc="lower right")
        plt.show()
    
    def get_config(self):
        base_config = super().get_config()
        config = {
            "vocab_size": self.vocab_size,
            "maxlen": self.maxlen,
            "emb_dim": self.emb_dim,
            "num_heads": self.num_heads,
            "ffn_dim": self.ffn_dim,
            "num_classes": self.num_classes,
            "num_layers": self.num_layers,
            "dropout": self.dropout,
            "regularizer": self.regularizer
        }
        
        return {**base_config, **config}
    
    @classmethod
    def from_config(cls, config):
        vocab_size = config.pop("vocab_size")
        maxlen = config.pop("maxlen")
        emb_dim = config.pop("emb_dim")
        num_heads = config.pop("num_heads")
        ffn_dim = config.pop("ffn_dim")
        num_classes = config.pop("num_classes")
        num_layers = config.pop("num_layers")
        dropout = config.pop("dropout")
        regularizer = config.pop("regularizer")
        
        return cls(vocab_size, maxlen, emb_dim, num_heads, ffn_dim, num_classes,
                  num_layers, dropout, regularizer)

def get_model(filepath):
    return keras.models.load_model(filepath)