synthid-text / app.py
RyanMullins's picture
Committing in broken state for sharing with HF
80c639a
raw
history blame
7.23 kB
from collections.abc import Sequence
import random
from typing import Optional
import gradio as gr
import spaces
import torch
import transformers
# If the watewrmark is not detected, consider the use case. Could be because of
# the nature of the task (e.g., fatcual responses are lower entropy) or it could
# be another
_MODEL_IDENTIFIER = 'google/gemma-2b'
_DETECTOR_IDENTIFIER = 'gg-hf/detector_2b_1.0_demo'
_PROMPTS: tuple[str] = (
'prompt 1',
'prompt 2',
'prompt 3',
)
_CORRECT_ANSWERS: dict[str, bool] = {}
_TORCH_DEVICE = (
torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
)
_WATERMARK_CONFIG_DICT = dict(
ngram_len=5,
keys=[
654,
400,
836,
123,
340,
443,
597,
160,
57,
29,
590,
639,
13,
715,
468,
990,
966,
226,
324,
585,
118,
504,
421,
521,
129,
669,
732,
225,
90,
960,
],
sampling_table_size=2**16,
sampling_table_seed=0,
context_history_size=1024,
)
_WATERMARK_CONFIG = transformers.generation.SynthIDTextWatermarkingConfig(
**_WATERMARK_CONFIG_DICT
)
tokenizer = transformers.AutoTokenizer.from_pretrained(_MODEL_IDENTIFIER)
tokenizer.pad_token_id = tokenizer.eos_token_id
model = transformers.AutoModelForCausalLM.from_pretrained(_MODEL_IDENTIFIER)
model.to(_TORCH_DEVICE)
logits_processor = transformers.generation.SynthIDTextWatermarkLogitsProcessor(
**_WATERMARK_CONFIG_DICT,
device=_TORCH_DEVICE,
)
detector_module = transformers.generation.BayesianDetectorModel.from_pretrained(
_DETECTOR_IDENTIFIER,
)
detector_module.to(_TORCH_DEVICE)
detector = transformers.generation.watermarking.BayesianDetectorModel(
detector_module=detector_module,
logits_processor=logits_processor,
tokenizer=tokenizer,
)
@spaces.GPU
def generate_outputs(
prompts: Sequence[str],
watermarking_config: Optional[
transformers.generation.SynthIDTextWatermarkingConfig
] = None,
) -> Sequence[str]:
tokenized_prompts = tokenizer(prompts, return_tensors='pt').to(_TORCH_DEVICE)
output_sequences = model.generate(
**tokenized_prompts,
watermarking_config=watermarking_config,
do_sample=True,
max_length=500,
top_k=40,
)
detections = detector(output_sequences)
print(detections)
return tokenizer.batch_decode(output_sequences)
with gr.Blocks() as demo:
gr.Markdown(
'''
# Using SynthID Text in your Genreative AI projects
[SynthID][synthid] is a Google DeepMind technology that watermarks and
identifies AI-generated content by embedding digital watermarks directly
into AI-generated images, audio, text or video.
SynthID Text is an open source implementation of this technology available
in Hugging Face Transformers that has two major components:
* A [logits processor][synthid-hf-logits-processor] that is
[configured][synthid-hf-config] on a per-model basis and activated when
calling `.generate()`; and
* A [detector][synthid-hf-detector] trained to recognized watermarked text
generated by a specific model with a specific configuraiton.
This Space demonstrates:
1. How to use SynthID Text to apply a watermark to text generated by your
model; and
1. How to indetify that text using a ready-made detector.
Note that this detector is trained specifically fore this demonstration. You
should maintain a specific watermarking configuration for every model you
use and protect that configuration as you would any other secret. See the
[end-to-end guide][synthid-hf-detector-e2e] for more on training your own
detectors, and the [SynthID Text documentaiton][raitk-synthid] for more on
how this technology works.
[raitk-synthid]: /responsible/docs/safeguards/synthid
[synthid]: https://deepmind.google/technologies/synthid/
[synthid-hf-config]: https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/generation/configuration_utils.py
[synthid-hf-detector]: https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/generation/watermarking.py
[synthid-hf-detector-e2e]: https://github.com/huggingface/transformers/blob/v4.46.0/examples/research_projects/synthid_text/detector_bayesian.py
[synthid-hf-logits-processor]: https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/generation/logits_process.py
'''
)
prompt_inputs = [
gr.Textbox(value=prompt, lines=4, label='Prompt')
for prompt in _PROMPTS
]
generate_btn = gr.Button('Generate')
with gr.Column(visible=False) as generations_col:
gr.Markdown(
'''
# SynthID: Tool
'''
)
generations_grp = gr.CheckboxGroup(
label='All generations, in random order',
info='Select the generations you think are watermarked!',
)
reveal_btn = gr.Button('Reveal', visible=False)
with gr.Column(visible=False) as detections_col:
gr.Markdown(
'''
# SynthID: Tool
'''
)
revealed_grp = gr.CheckboxGroup(
label='Ground truth for all generations',
info=(
'Watermarked generations are checked, and your selection are '
'marked as correct or incorrect in the text.'
),
)
detect_btn = gr.Button('Detect', visible=False)
def generate(*prompts):
standard = generate_outputs(prompts=prompts)
watermarked = generate_outputs(
prompts=prompts,
watermarking_config=_WATERMARK_CONFIG,
)
responses = standard + watermarked
random.shuffle(responses)
_CORRECT_ANSWERS.update({
response: response in watermarked
for response in responses
})
# Load model
return {
generate_btn: gr.Button(visible=False),
generations_col: gr.Column(visible=True),
generations_grp: gr.CheckboxGroup(
responses,
),
reveal_btn: gr.Button(visible=True),
}
generate_btn.click(
generate,
inputs=prompt_inputs,
outputs=[generate_btn, generations_col, generations_grp, reveal_btn]
)
def reveal(user_selections: list[str]):
choices: list[str] = []
value: list[str] = []
for response, is_watermarked in _CORRECT_ANSWERS.items():
if is_watermarked and response in user_selections:
choice = f'Correct! {response}'
elif not is_watermarked and response not in user_selections:
choice = f'Correct! {response}'
else:
choice = f'Incorrect. {response}'
choices.append(choice)
if is_watermarked:
value.append(choice)
return {
reveal_btn: gr.Button(visible=False),
detections_col: gr.Column(visible=True),
revealed_grp: gr.CheckboxGroup(choices=choices, value=value),
detect_btn: gr.Button(visible=True),
}
reveal_btn.click(
reveal,
inputs=generations_grp,
outputs=[
reveal_btn,
detections_col,
revealed_grp,
detect_btn
],
)
if __name__ == '__main__':
demo.launch()